Quick Guide of Jumper Setting and operation of FBs-7SG Module
This guide is a supplement mainly for the users who have used the FBe-7SG module. Before the formal FBs user's manual is complete, for those users who never used the FBe-7SG module, please also refer the content of FBE Advance manual chapter 17.

1. Jumpers function and its location

	Jumper	Location	Function
Common Control	JP2	Lower position	Decode(With jumper)/non-decode(No jumper)
	JP3	Lower position	O.V. test(T)or normal(N)
	JP1	Rear side	High driving voltage selection
DISP0	JP5	Upper position	High(HV)/Low(LV) driving voltage selection $*_{1}$
	JP6	Upper position	$0.6 \mathrm{~V}(0.6 \mathrm{~V})$ voltage drop selection
	JP7	Upper position	$1.2 \mathrm{~V}(1 \mathrm{~V} 2)$ voltage drop selection
	JP8	Lower position	High(HV)/Low(LV) driving voltage selection $*_{1}$
	JP9	Lower position	$0.6 \mathrm{~V}(0.6 \mathrm{~V})$ voltage drop selection
	JP10	Lower position	$1.2 \mathrm{~V}(1 \mathrm{~V} 2)$ voltage drop selection

Note 1: $\operatorname{High}(\mathrm{HV}) / \mathrm{Low}(\mathrm{LV})$ driving voltage selection jumper must be inserted with short metal bar horizontally.
2. High driving voltage selection - JP1

This jumper is located at the rear side of the module, please turn the module's bottom face up when perform the setting.

The upper three jumpers can only be selected one for shorted when usage. This setting only takes effective when the $\mathrm{High}(\mathrm{HV}) / \mathrm{Low}(\mathrm{LV})$ driving voltage selection jumper is set to HV position. When the jumper is positioned at LV, the driving voltage is 5 V .
When BOOST jumper is shorted, the driving voltage will be boosted about 5% from its nominal value can be used for compensation of line voltage drop.

3. I/O address occupation and displays

Module	Display Mode	I/O Occupied	Model ID.	Displays
7SG1	Decode	3 R.O.	7SG1S	8 Digits
	Non-Decode	4 R.O.	7SG1H	64 Segments
7SG2	Decode	5 R.O.	7SG2S	16 Digits
	Non-Decode	8 R.O.	7SG2H	128 Segments

4. Display control

The pattern of the LED display driven by the FBs-7SG LED display control module can be easily controlled by fill up the contents of the corresponding output registers. For more complicate applications, e.g. leading zero display control, message scrolling and 16 -segment display control, we provide a handy instruction TDSP to facilitate the user's coding. Please refer the User's manual for detail description of TDSP.

Display control of 7SG1 - decode mode

The $\mathbf{R m}$ at following table represent the first output register allocated for 7SG1 module

$\mathbf{R m}+\mathbf{0}$	This register controls the decimal point display of every digit. D7~D0 control the decimal point of $8^{\text {th }} \sim 1$ st will be lighted when the correspondigit respectively. The decimal point wintrol bit is 1.
$\mathbf{R m + 1}$	This register controls the display of $4^{\text {th }} \sim 1^{\text {st }}$ digit. Every 4 bits(nibble) control one digit. D3 \sim D0 control the first digit(right most), D7 \sim D4 control the second digit, D11 \sim D8 control the third digit while D15~D12 control the fourth digit.
$\mathbf{R m + 2}$	This register can control the display of $8^{\text {th }} \sim 5^{\text {th }}$ digit. Every 4 bits(nibble) control one digit. D3 \sim D0 control the $5^{\text {th }}$ digit, D7 \sim D4 control the $6^{\text {th }}$ digit, D11 \sim D8 control the $7^{\text {th }}$ digit while D15 \sim D12 control the $8^{\text {th }}$ digit(left most).

Please refer the contents of page 4 for the corresponding decoded display patterns for each 4 bits combination value.

Display control of 7SG1 - non-decode mode

The $\mathbf{R m}$ at following table represent the first output register allocated for 7SG1 module

$\mathbf{R m}+\mathbf{0}$	This register controls the segment display of $2^{\text {nd }} \sim 1^{\text {st }}$ digit. Every 8 bits(byte) control one digit. D7~D0 control the first digit(right most), D15~D8 control the second digit.
$\mathbf{R m}+1$	This register controls the segment display of $4^{\text {th }} \sim 3^{\text {rd }}$ digit. Every 8 bits(byte) control one digit. D7~D0 control the $3^{\text {rd }}$ digit, D15~D8 control the $4^{\text {th }}$ digit.
$\mathbf{R m + 2}$	This register controls the segment display of $6^{\text {th }} \sim 5^{\text {th }}$ digit. Every 8 bits(byte) control one digit. D7~D0 control the $5^{\text {th }}$ digit, D15~D8 control the $6^{\text {th }}$ digit.
$\mathbf{R m}+\mathbf{3}$	This register controls the segment display of $8^{\text {th }} \sim 7^{\text {th }}$ digit. Every 8 bits(byte) control one digit. D7~D0 control the $7^{\text {th }}$ digit, D15~D8 control the $8^{\text {th }}$ digit(left most).

Please refer the contents of page 5 for the corresponding driven segment for each control bits.

Display control of 7SG2 - decode mode

The $\mathbf{R m}$ at following table represent the first output register allocated for 7SG2 module

$\mathbf{R m + 0}$	This register controls the decimal point display of every digit. D15~D0 control the decimal point of $16^{\text {th }} \sim 1^{\text {st }}$ digit respectively. The decimal point will be lighted when the corresponding control bit is 1 .
$\mathbf{R m + 1}$	This register controls the display of $4^{\text {th }} \sim 1^{\text {st }}$ digit. Every 4 bits(nibble) control one digit. D3~D0 control the first digit(right most), D7~D4 control the second digit, D11~D8 control the third digit while D15~D12 control the fourth digit.
$\mathbf{R m + 2}$	This register controls the display of $8^{\text {th }} \sim 5^{\text {th }}$ digit. Every 4 bits(nibble) control one digit. D3~D0 control the first digit, D7~D4 control the second digit, D11~D8 control the third digit while D15~D12 control the fourth digit.
Rm+3	This register controls the display of $12^{\text {th }} \sim 9^{\text {th }}$ digit. Every 4 bits(nibble) control one digit. D3~D0 control the $9^{\text {th }}$ digit, D7~D4 control the $10^{\text {th }}$ digit, D11~D8 control the $11^{\text {th }}$ digit while D15~D12 control the $12^{\text {th }}$ digit.
Rm+4	This register can control the display of $16^{\text {th }} \sim 13^{\text {th }}$ digit. Every 4 bits(nibble) control one digit. D3~D0 control the $13^{\text {th }}$ digit, D7~D4 control the $14^{\text {th }}$ digit, D11~D8 control the $15^{\text {th }}$ digit while D15~D12 control the $16^{\text {th }}$ digit(left most).

Please refer the contents of page 4 for the corresponding decoded display patterns for each 4 bits value

Display control of 7SG2 - non-decode mode

The $\mathbf{R m}$ at following table represent the first output register allocated for 7SG2 module

$\mathbf{R m + 0}$	This register controls the segment display of $2^{\text {nd }} \sim 1^{\text {st }}$ digit. Every 8 bits(byte) control one digit. D7~D0 control the first digit(right most), D15~D8 control the second digit.
$\mathbf{R m + 1}$	This register controls the segment display of $4^{\text {th }} \sim 3^{\text {rd }}$ digit. Every 8 bits(byte) control one digit. D7~D0 control the $3^{\text {rd }}$ digit, D15~D8 control the $4^{\text {th }}$ digit.
$\mathbf{R m + 2}$	This register controls the segment display of $6^{\text {th }} \sim 5^{\text {th }}$ digit. Every 8 bits(byte) control one digit. D7~D0 control the $5^{\text {th }}$ digit, D15~D8 control the $6^{\text {th }}$ digit.
$\mathbf{R m + 3}$	This register controls the segment display of $8^{\text {th }} \sim 7^{\text {th }}$ digit. Every 8 bits(byte) control one digit. D7~D0 control the $7^{\text {th }}$ digit, D15~D8 control the $8^{\text {th }}$ digit.
$\mathbf{R m + 4}$	This register controls the segment display of $10^{\text {th }} \sim 9^{\text {th }}$ digit. Every 8 bits(byte) control one digit. D7~D0 control the $9^{\text {th }}$ digit, D15~D8 control the $10^{\text {th }}$ digit.
Rm+5	This register controls the segment display of $12^{\text {th }} \sim 11^{\text {th }}$ digit. Every 8 bits(byte) control one digit. D7~D0 control the $11^{\text {th }}$ digit, D15~D8 control the $12^{\text {th }}$ digit.

$\mathbf{R m + 6}$	This register controls the segment display of $14^{\text {th }} \sim 13^{\text {th }}$ digit. Every 8 bits(byte) control one digit. D7 \sim D0 control the $13^{\text {th }}$ digit, D15 D8 control the $14^{\text {th }}$ digit.
$\mathbf{R m + 7}$	This register controls the segment display of $16^{\text {th }} \sim 15^{\text {th }}$ digit. Every 8 bits(byte) control one digit. D7 \sim D0 control the $15^{\text {th }}$ digit, D15 D8 control the $16^{\text {th }}$ digit(left most).

Please refer the contents of page 5 for the corresponding driven segment for each control bits.

Display pattern for decoded mode

Nibble value		Segment designation	Segment data								Display pattern
Hexade cimal	Binary		a	b	c	d	e	f	g		
0	0000		1	1	1	1	1	1	0		\square
1	0001		0	1	1	0	0	0	0		1
2	0010		1	1	0	1	1	0	1		\sum
3	0011		1	1	1	1	0	0	1		3
4	0100		0	1	1	0	0	1	1		4
5	0101		1	0	1	1	0	1	1		5
6	0110		1	0	1	1	1	1	1		\square
7	0111		1	1	1	0	0	1	0		7
8	1000		1	1	1	1	1	1	1		B
9	1001		1	1	1	1	0	1	1		9
A	1010		0	0	0	0	0	0	1		-
B	1011		1	0	0	1	1	1	1		E
C	1100		0	1	1	0	1	1	1		H
D	1101		0	0	0	1	1	0	1		E
E	1110		0	0	0	1	1	1	1		k
F	1111		0	0	0	0	0	0	0		

Following segment designation only apply for the LED display board provided by FATEK.
Non-decode mode bit control designation for seven-segment display device

Non-decode mode bit control designation for 16-segment display device

