Chapter 18 FB-6AD Analog Input Module

The resolution of FB-PLC analogue input (or called as A/D input) is 12 bits. The OS version of main unit before V3.2x has only 8 points of analogue input for FB-PLC (which goes together with old A/D module of FB-8AD). Starting from OS version V3.30, the analogue input can reach as many as 64 points, and its module changes to FB-6AD with new model of slim shape. Each FB-6AD has 6 points of input; therefore, it can expand upto 11 FB-6AD input modules with 64 points of analogue input in total (the last two points of the 11th module are invalid).

18.1 Specifications of FB-6AD Functions

Item				cations	Remark
Input points			6 points (Channels)		
Digital input value			-2048~+2047		
Span of analog input	Bipolar*	$10 \mathrm{~V}^{*}$	1*.Voltage: - $10 \sim 10 \mathrm{~V}$	5. Current: $-20 \sim 20 \mathrm{~mA}$	- There are 8 kinds of input in total, user may set by himself. * : It means the default setting.
		5 V	2.Voltage: $-5 \sim 5 \mathrm{~V}$	6. Current: $-10 \sim 10 \mathrm{~mA}$	
	Unipolar	10 V	3.Voltage: $0 \sim 10 \mathrm{~V}$	7. Current: $0 \sim 20 \mathrm{~mA}$	
		5 V	4.Voltage: $0 \sim 5 \mathrm{~V}$	8. Current: $0 \sim 10 \mathrm{~mA}$	
Finest resolution			Voltage: 1.22 mV (when input set to $0 \sim 5 \mathrm{~V}$) Current: $2.44 \mu \mathrm{~A}$ (when input set to $0 \sim 10 \mathrm{~mA}$)		=Analogue input signal/4096
Accuracy			Within $\pm 1 \%$ of full scale		
Conversion rate			Update the A/D readings every scan		
Maximum absolute input signal			Voltage: $\pm 15 \mathrm{~V}$ (max) Current: $\pm 30 \mathrm{~mA}$ (max)		It may cause the destruction to hardware if exceeds this value.
Input resistance			$40 \mathrm{~K} \Omega$ (voltage input), 250Ω (current input)		
Insulation			Photocouple isolation		No isolation between channels
External power supply			$\begin{aligned} & 24 \mathrm{VDC} \pm 20 \%, \\ & \text { Current < 200mA/@24VDC } \end{aligned}$		

18.2 The Procedure of Using FB-6AD Analogue Input Module

Set up input voltage/current choice (V/I),unipolar/bipolar (B/U), input voltage/current range etc. jumpers setting for respective point before installation. Cascade connecting FB-6AD through the PLC expansion interface, and complete the wiring of 24VDC external power supply and analogue inputs.

Directly access analogue input registers R3840~R3903 to acquire the analogue input value of $\mathrm{CH} 0 \sim \mathrm{CH} 63$.

18.3 Address Allocation of FB-PLC Analogue Inputs

The memory mapping of FB-6AD inputs is beginning from the module closest to main unit, it is orderly numbered as $\mathrm{CHO} \sim \mathrm{CH} 5$ (1st module), $\mathrm{CH} 6 \sim \mathrm{CH} 11$ (2nd module), $\mathrm{CH} 12 \sim \mathrm{CH} 17$ (3rd module)...... and increased with occurring order number, i.e. for each module, it adds with 6 and is totally 64 inputs from $\mathrm{CH} 0 \sim \mathrm{CH} 63$, and they are corresponding to the respective internal analogue input register of PLC (so called as IR register) R3840~R3903 as listed in following table. As long as there is expanded FB-6AD module connection, the PLC main unit will automatically check to verify the quantity of FB-6AD connected, and store the respective A/D value beginning from CH0 orderly into the IR register R3840~R3903; user just access from R3840~R3093 and can acquire the corresponding input span. For the relationship between accessed value and input signal, please refer to section 18.6.

(Sign extended of B11)
\qquad

18.4 Explanation of FB-6AD Hardware

(1) External power input terminal: Power supply of analogue circuit for FB-6AD, the voltage can be $24 \mathrm{VDC} \pm 20 \%$ and should be supplied with 4 W of power at least.
(2) Protecting ground terminal: To connect to the safety Earth Ground of the power system.
(3) Expansion input cable: It should be connected to the front expansion unit, or the expansion output of main unit.
(4) Expansion output connector: Provides the connection for next expansion unit.
(5) Power indicator: It indicates whether the power supply at analogue circuit and external input power source are normal.
(6) Framing ground: To connect to the shielding of analogue input, please refer to the wiring connection diagram of next page.
(7) ~(12): Input terminal of $\mathrm{CH} 0 \sim \mathrm{CH} 5$.
(13)~ (18: Selective jumpers of voltage(V)/current(I) for $\mathrm{CH} 0 \sim \mathrm{CH} 5$.

All of the 6 analogue inputs of FB-6AD can either be voltage input or current input. The voltage or current input is sharing to use the same pair of input terminal (In+ and $\operatorname{In}-$), and voltage or current is depending on the voltage $(\mathrm{V}) /$ current (I) jumpers pair to define (the voltage V is close to terminal side, otherwise is the current I , as shown in the JP3~JP8 of diagram B above). The V/I selective jumpers must be placed according to the text label direction (V, I are both vertically placed) to keep vertical as following diagram illustration; horizontally placed will result in error.

		χ
Voltage input (V)	Current input (1)	
		or
($\mathrm{CHO} \sim \mathrm{CH} 1)$	($\mathrm{CHO} \sim \mathrm{CH} 1)$	
		Jumper horizontally placed or not placed in pair are both incorrect.
($\mathrm{CH} 2 \sim \mathrm{CH} 5$)	$(\mathrm{CH} 2 \sim \mathrm{CH} 5)$	

(19) $5 \mathrm{~V} / 10 \mathrm{~V}$ or $10 \mathrm{~mA} / 20 \mathrm{~mA}$ selection: Maximum input span selection

All Channels must be collectively selected and can't be independently chosen.

Jumper setting		$\begin{gathered} \text { 10V/20mA span } \\ \hline \begin{array}{c} 5 \mathrm{~V} \quad 10 \mathrm{~V} \\ \mathrm{JP2} \end{array}+\quad . \quad \end{gathered}$	
Analogue input	Unipolar (U)	$\begin{gathered} 0 \mathrm{~V} \sim 10 \mathrm{~V} \\ 0 \mathrm{~mA} \sim 20 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 0 \mathrm{~V} \sim 5 \mathrm{~V} \\ 0 \mathrm{~mA} \sim 10 \mathrm{~mA} \end{gathered}$
	Bipolar (B)	$\begin{gathered} -10 \mathrm{~V} \sim 10 \mathrm{~V} \\ -20 \mathrm{~mA} \sim 20 \mathrm{~mA} \end{gathered}$	$\begin{gathered} -5 \mathrm{~V} \sim 5 \mathrm{~V} \\ -10 \mathrm{~mA} \sim 10 \mathrm{~mA} \end{gathered}$

(20) U/B selection: Unipolar (U) or Bipolar (B) selection

The jumper must according to the U/B text label direction (both B, U are horizontal) to be horizontally placed; it mustn't be vertically placed.

\square		X
Unipolar (U)	Bipolar (B)	JP1 JP1
		or Jumper vertically placed or not inserted in pair are both incorrect

18.5 The Input Circuit of FB-6AD

18.6 The Input Characteristic and Jumper Setting of FB-6AD

The 8 kind of input range selections of FB-6AD must be based on the settings of $\mathrm{V} / \mathrm{I}, \mathrm{U} / \mathrm{B}, 5 \mathrm{~V} / 10 \mathrm{~V}$ jumpers to define, that described in previous section. Hereby it will be illustrated with diagram to explain the input conversion characteristics of $\mathrm{B} / \mathrm{U}, 5 \mathrm{~V} / 10 \mathrm{~V}$ jumpers setting (4 kind of selections). These four conversion curves incorporating V / I (voltage/ current) input setting can yield the above mentioned 8 kind of inputs. Please refer to the diagram illustration in section 18.4 for the explanation of V/I selection.

Input	Voltage	$-10 \mathrm{~V} \sim 10 \mathrm{~V}$
	Current	$-20 \mathrm{~mA} \sim 20 \mathrm{~mA}$

Diagram 2: Bipolar 5V (10mA) Span

Input range	Voltage	$-5 \mathrm{~V} \sim 5 \mathrm{~V}$	Jumper setting	JP2 $\begin{gathered}5 \mathrm{~V} 10 \mathrm{~V} \\ \square \square \square\end{gathered}$	- ■	JP1
	Current	$-10 \mathrm{~mA} \sim 10 \mathrm{~mA}$			- ${ }^{\text {■ }}$	

Diagram 3: Unipolar 10V (20mA) Span

Input	Voltage	$0 \mathrm{~V} \sim 10 \mathrm{~V}$
	Current	$0 \mathrm{~mA} \sim 20 \mathrm{~mA}$

- (Span of Input)

Diagram 4: Unipolar 5V (10mA) Span

Input	Voltage	$0 \mathrm{~V} \sim 5 \mathrm{~V}$
	Current	$0 \mathrm{~mA} \sim 10 \mathrm{~mA}$

18.7 Notifications for the operation of FB-6AD

A

 Matching with the OS version of Main Unit and FB-6ADFB-6AD must run on the main unit with OS version later than (include) V 3.30 to work normally. If installing FB-6AD to any main unit with version before V3.30, then only the first analog input (CH 0) can work normally, all other inputs will not be able to work correctly. Consequently, for main unit with version before V3.30, please use FB-8AD analogue module and can only install with one module with 8 points of analogue input totally.

Note: To tell the version of the main unit, you can just open up the cover at the center of the CPU module and see sticker with $\begin{gathered}\text { FB-MAC } \\ V 3 . x x\end{gathered}$ or $\begin{gathered}\text { FB-MU } \\ V 3 . x x\end{gathered}$ The " $3 . x x$ " is the version of main unit.

B FB-6AD can not install together with $\mathrm{FB}-4 \mathrm{AJ}(\mathrm{K}) \times \times$ temperature module or FB-8AD analogue input module!

C

The processing for Unipolar Inputs

The minimum value (0 V or 0 mA) should be 0 for the analogue input of unipolar, and should be 4095 for its maximum input. Nevertheless, the full resolution of 4096 of FB-6AD is expressed with -2048 (minimum) ~ 2047 (maximum), if the user intends to make it become 0~4095, it must be added with a deviation value of 2048 to IR (R3840~R3903) to acquire.

D Tackling on the OFFSET Mode Input
Confined in the limitation of space, the FB-6AD provides only normal mode for analog inputs. For the process of input for signal source of offset mode (take $4 \sim 20 \mathrm{~mA}$ input for example), the user can set A/D input range to be $0 \sim 20 \mathrm{~mA}$, convert the IR value to unipolar ($0 \sim 4095$), lessen the offset (4 mA) value ($4095 \times 4 / 20=819$), then times the maximum input amount (20 mA), and divide by the maximum span ($4 \mathrm{~mA} \sim 20 \mathrm{~mA}$); and it can acquire the offset input conversion from $4 \mathrm{~mA} \sim 20 \mathrm{~mA}$ reflect to $0 \sim 4095$, the procedure is as follows:
a. Set the A/D input range of analogue input module to be $0 \sim 20 \mathrm{~mA}$.
b. Add the $\operatorname{IR}(R 3840 \sim R 3903)$ value with 2048 and then store it into register $R n$ (the value of $R n$ is $0 \sim$ 4095).
c. Deduct 819 ($4095 \times \frac{4}{20}$) from value of register Rn , and store the calculated value back to register $R n$; if the value is negative, clear the content of register $R n$ to 0 (the value of $R n$ is $0 \sim 3276$).
d. The value of register Rn times 20 and then divide by $16\left(\operatorname{Rn} \times \frac{20}{16}\right)$, and it will convert the $4 \mathrm{~mA} \sim 20 \mathrm{~mA}$ input to range of $0 \sim 4095$.
e. To sum up the items from $\mathrm{a} \sim \mathrm{d}$, the mathematical equation is as follows:

Offset mode conversion value $\left.=〔 I R+2048-\left(4095 \times \frac{4}{20}\right)\right\rceil \times \frac{20}{16}$; the value is $0 \sim 4095$.

