Chapter 18 FB-6AD Analog Input Module

The resolution of FB-PLC analogue input (or called as A/D input) is 12 bits. The OS version of main unit before V3.2x has only 8 points of analogue input for FB-PLC (which goes together with old A/D module of FB-8AD). Starting from OS version V3.30, the analogue input can reach as many as 64 points, and its module changes to FB-6AD with new model of slim shape. Each FB-6AD has 6 points of input; therefore, it can expand upto 11 FB-6AD input modules with 64 points of analogue input in total (the last two points of the 11th module are invalid).

18.1 Specifications of FB-6AD Functions

Item			Specifications	Remark	
Input points			6 points (Channels)		
Digital input value			-2048~+2047		
Span of analog input	Bipolar*	10V*	1*.Voltage: -10~10V 5. Current: -20~20mA	• There are 8 kinds of input in total,	
		5V	2.Voltage: $-5 \sim 5V$ 6. Current: $-10 \sim 10$ mA		
	Unipolar	10V	3.Voltage: 0 \sim 10V 7.Current: 0 \sim 20mA	* : It means the default setting.	
		5V	4.Voltage: 0 \sim 5V 8. Current: 0 \sim 10mA		
Finest resolution			Voltage: 1.22mV (when input set to $0\sim$ 5V)	=Analogue input signal/4096	
			Current: 2.44 μ A (when input set to 0 \sim 10mA)		
Accuracy			Within $\pm 1\%$ of full scale		
Conversion rate			Update the A/D readings every scan		
Maximum absolute input			Voltage: ±15V (max)	It may cause the destruction to	
signal			Current: ±30mA (max)	hardware if exceeds this value.	
Input resistance			40K Ω (voltage input), 250 Ω (current input)		
Insulation			Photocouple isolation	No isolation between channels	
External power supply			24VDC±20%,		
			Current < 200mA/@24VDC		

18.2 The Procedure of Using FB-6AD Analogue Input Module

18.3 Address Allocation of FB-PLC Analogue Inputs

The memory mapping of FB-6AD inputs is beginning from the module closest to main unit, it is orderly numbered as CH0 \sim CH5 (1st module), CH6 \sim CH11 (2nd module), CH12 \sim CH17 (3rd module)..... and increased with occurring order number, i.e. for each module, it adds with 6 and is totally 64 inputs from CH0 \sim CH63, and they are corresponding to the respective internal analogue input register of PLC (so called as IR register) R3840 \sim R3903 as listed in following table. As long as there is expanded FB-6AD module connection, the PLC main unit will automatically check to verify the quantity of FB-6AD connected, and store the respective A/D value beginning from CH0 orderly into the IR register R3840 \sim R3903; user just access from R3840 \sim R3093 and can acquire the corresponding input span. For the relationship between accessed value and input signal, please refer to section 18.6.

Analogue input		Content of IR	Input label	
register (IR)	B15 B14 B13 B12	B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0	of FB-6AD	
R3840	B11 B11 B11 B11	B11 A/D value of CH0 B0	CH0	
R3841	//	A/D value of CH1	CH1	
R3842	//	A/D value of CH2	CH2	1 at madula
R3843	//	A/D value of CH3	CH3	/ Ist module
R3844	//	A/D value of CH4	CH4	
R3845	//	A/D value of CH5	CH5	
R3846	//	A/D value of CH6	CH0	
R3847	//	A/D value of CH7	CH1	
R3848	//	A/D value of CH8	CH2	2nd module
R3849	//	A/D value of CH9	CH3	•
•	•		•	
Ĩ			· ·	
R3896	//	A/D value of CH56	CH2	•
R3897	//	A/D value of CH57	CH3	10th module
R3898	//	A/D value of CH58	CH4	
R3899	//	A/D value of CH59	CH5	
R3900	//	A/D value of CH60	CH0	
R3901	//	A/D value of CH61	CH1	11th module
R3902	//	A/D value of CH62	CH2	(CH4~CH5 Invalid)
R3903	//	B11 A/D value of CH63 B0	CH3	

(Sign extended of B11)

18.4 Explanation of FB-6AD Hardware

- ① External power input terminal: Power supply of analogue circuit for FB-6AD, the voltage can be 24VDC±20% and should be supplied with 4W of power at least.
- 2 Protecting ground terminal: To connect to the safety Earth Ground of the power system.
- ③ Expansion input cable: It should be connected to the front expansion unit, or the expansion output of main unit.
- ④ Expansion output connector: Provides the connection for next expansion unit.
- S Power indicator: It indicates whether the power supply at analogue circuit and external input power source are normal.
- Framing ground: To connect to the shielding of analogue input, please refer to the wiring connection diagram of next page.
- $\bigcirc \sim \textcircled{1}$: Input terminal of CH0 \sim CH5.

 $(3 \sim 1)$: Selective jumpers of voltage(V)/current(I) for CH0~CH5.

All of the 6 analogue inputs of FB-6AD can either be voltage input or current input. The voltage or current input is sharing to use the same pair of input terminal (In+ and In–), and voltage or current is depending on the voltage(V)/current(I) jumpers pair to define (the voltage V is close to terminal side, otherwise is the current I, as shown in the JP3 \sim JP8 of diagram B above). The V/I selective jumpers must be placed according to the text label direction (V, I are both vertically placed) to keep vertical as following diagram illustration; horizontally placed will result in error.

(9 5V/10V or 10mA/20mA selection: Maximum input span selection

All Channels must be collectively selected and can't be independently chosen.

		<u>10V/20mA span</u> <u>5V/10mA span</u>	
Jump	per setting	5V 10V JP2 I	5V 10V JP2 ■ ■
Analogue input		0V~10V	0V~5V
		0mA~20mA	0mA~10mA
		-10V~10V	-5V~5V
		-20 mA \sim 20mA	-10 mA \sim 10mA

20 U/B selection: Unipolar (U) or Bipolar (B) selection

The jumper must according to the U/B text label direction (both B, U are horizontal) to be horizontally placed; it mustn't be vertically placed.

)	×
Unipolar (U)	Bipolar (B)	
		Jumper vertically placed or not inserted in pair are both incorrect

18.5 The Input Circuit of FB-6AD

18.6 The Input Characteristic and Jumper Setting of FB-6AD

The 8 kind of input range selections of FB-6AD must be based on the settings of V/I, U/B, 5V/10V jumpers to define, that described in previous section. Hereby it will be illustrated with diagram to explain the input conversion characteristics of B/U, 5V/10V jumpers setting (4 kind of selections). These four conversion curves incorporating V/I (voltage/ current) input setting can yield the above mentioned 8 kind of inputs. Please refer to the diagram illustration in section 18.4 for the explanation of V/I selection.

Diagram 1: Bipolar 10V (20mA) Span

Diagram 3: Unipolar 10V (20mA) Span

18.7 Notifications for the operation of FB-6AD

A Matching with the OS version of Main Unit and FB-6AD

FB-6AD must run on the main unit with OS version later than (include) V3.30 to work normally. If installing FB-6AD to any main unit with version before V3.30, then only the first analog input (CH0) can work normally, all other inputs will not be able to work correctly. Consequently, for main unit with version before V3.30, please use FB-8AD analogue module and can only install with one module with 8 points of analogue input totally.

Note: To tell the version of the main unit, you can just open up the cover at the center of the CPU module and

```
see sticker with FB-MAC
```

The "3.xx" is the version of main unit.

B [FB-6AD can not install together with FB-4AJ(K)×× temperature module or FB-8AD analogue input module!

FB-MU

V3.××

or

V3.××

C The processing for Unipolar Inputs

The minimum value (0V or 0mA) should be 0 for the analogue input of unipolar, and should be 4095 for its maximum input. Nevertheless, the full resolution of 4096 of FB-6AD is expressed with –2048 (minimum) \sim 2047 (maximum), if the user intends to make it become 0 \sim 4095, it must be added with a deviation value of 2048 to IR (R3840 \sim R3903) to acquire.

D Tackling on the OFFSET Mode Input

Confined in the limitation of space, the FB-6AD provides only normal mode for analog inputs. For the process of input for signal source of offset mode (take $4 \sim 20$ mA input for example), the user can set A/D input range to be $0 \sim 20$ mA, convert the IR value to unipolar ($0 \sim 4095$), lessen the offset (4mA) value (4095x4/20=819), then times the maximum input amount (20mA), and divide by the maximum span (4mA ~ 20 mA); and it can acquire the offset input conversion from 4mA ~ 20 mA reflect to $0 \sim 4095$, the procedure is as follows:

- a. Set the A/D input range of analogue input module to be $0 \sim 20$ mA.
- Add the IR (R3840~R3903) value with 2048 and then store it into register Rn (the value of Rn is 0~4095).
- c. Deduct 819 (4095x $\frac{4}{20}$) from value of register Rn, and store the calculated value back to register Rn; if the value is negative, clear the content of register Rn to 0 (the value of Rn is 0~3276).
- d. The value of register Rn times 20 and then divide by 16 (Rn x $\frac{20}{16}$), and it will convert the 4mA~20mA input to range of 0~4095.
- e. To sum up the items from $a \sim d$, the mathematical equation is as follows:

Offset mode conversion value = $(IR+2048 - (4095 \times \frac{4}{20})) \times \frac{20}{16}$; the value is 0~4095.