
Chapter 9  Advanced Application Instructions  
 
 
 

z Arithmetical operation instructions （FUN23〜30） ..........................9-2 〜 9-9 

z Logical operation instructions （FUN35〜36） ..........................9-10 〜 9-11 

z Comparison instructions （FUN37） .................................9-12 

z Data movement instructions （FUN40〜48） ..........................9-13 〜 9-21 

z Shifting/Rotating instructions （FUN51〜54） ..........................9-22 〜 9-25 

z Code conversion instructions  （FUN57〜64） ..........................9-26 〜 9-38 

z Flow control instructions （FUN65〜71） ..........................9-39 〜 9-46 

z Temperature control instructions 1 （FUN72〜73） ..........................9-47 〜 9-48 

z I/O instructions （FUN74〜84） ..........................9-49 〜 9-62 

z Temperature control instructions 2 （FUN85〜86） ..........................9-63 〜 9-64 

z Cumulative timer instructions （FUN87〜89） ..........................9-65 〜 9-66 

z Watchdog timer instructions （FUN90〜91） ..........................9-67 〜 9-68 

z High speed counting/timing instructions （FUN92〜93） ..........................9-69 〜 9-70 

z Report printing instructions （FUN94） .................................9-71 〜 9-72 

z Slow up/Slow down instructions （FUN95） .................................9-73 〜 9-74 

z Communication instructions （FUN96〜97） ..........................9-75 〜 9-76 

z Table instructions （FUN100〜113） ......................9-77 〜 9-94 

z Matrix instructions （FUN120〜130） ......................9-95 〜 9-106 

z NC position instructions （FUN140〜143） ......................9-107 〜 9-110 

z Interrupt control instructions （FUN145〜146） ......................9-111 〜 9-112 

9-1 



Arithmetical operation instructions 

FUN 23  
DIV48 48-BIT DIVISION 

FUN 23  
DIV48 

23P.DIV48

EN Sa:

Sb:

D :

D=0

ERR

Operation control Quotient=0

Divisor=0

 

Sa：Starting register of dividend 
Sb：Starting register of divisor 
D  : Starting register for storing the division result 

(quotient) 
Sa，Sb，can combine V,Z for index addressing. 

 
HR OR SR ROR DR XR Range 

Ope- 
rand 

R0 
∣ 

R3839 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

V 
、 
Z 

Sa ○ ○ ○ ○ ○ ○ 
Sb ○ ○ ○ ○ ○ ○ 
D ○ ○ ○* ○* ○ ○ 

 
 
 

z When operation control “EN”=1 or “EN↑” (  instruction) changes from 0→1, will perform the 42 bits division 
operation. Dividend and divisor are each formed by three consecutive registers starting by Sa and Sb 
respectively. If the result is zero, ‘D=0’ output will be set to 1. If divisor is zero then the ‘ERR’ will be set to 1 
and the resultant register will keep unchanged. 

z All operands involved in this function are all 42 bits, so Sa, Sb and D are all comprised by 3 consecutive 
registers. 

Example: 48-bit division 

In this example dividend formed by register R2, R1, R0 will be divided by divisor formed by register R5, R4, R3. The 
quotient will store in R8, R7, and R6.  

Sa:

Sb:

D :

EN
X0

ERR

R      0 D=0

23P.DIV48

R      3

R      6

 

R2 R1 R0 
 Sa 

2147483647 
 

R5 R4 R3 
÷  Sb 

1234567 

 
 R8 R7 R6 

 
 1739 

  Quotient 
 

9-2 



Arithmetical operation instructions 

FUN 24  
SUM 

SUM    
(Summation of block data) 

FUN 24  
SUM 

S :

D :

N :

24DP.SUM

ENOperation control

 

S : Starting number of source register  
N : Number of registers to be summed 

(successive N data units starting from S) 
D : The register which stored the result (summation) 

S, N, D, can associate with V, Z index register to serve the 
indirect addressing application.  

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

1 
∣ 

511 

V 
、 
Z 

S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  ○ 
N ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
D  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  ○ 

 

z When operation control “EN”=1 or “EN↑” (  instruction) changes from 0→1, it puts the successive N units of 
16bit or 32 bit (  instruction) registers for addition calculation to get the summation, and stores the result into 
the register which is designated by D.  

z When the value of N is 0 or greater than 511, the operation will not be performed. 

z Communication port1 or port2 can be used to serve as a general purpose ASCII communication interface.  If 
the data error detecting method is Check-Sum, this instruction can be used to generate the sum value for 
sending data or ot use this instruction to check if the received data is error or not. 

〈Example 1〉When M1 changes from OFF→ON, following instruction will calculates the summation for 16-bit data. 

D :     R100

S :     R0
24P.SUM

N :     6

M1
EN

 

z The left illustrates that 6 16-bit registers starting from R0 
is calculated for summation, and the result is stored into 
the R100 register. 

R0=0030H 
R1=0031H 
R2=0032H     
R3=0033H 
R4=0034H 
R5=0035H 

〈Example 2〉When M1 is ON, it calcu

M1
EN

24D.SUM

S:  R0

N:  3
D:  R100

R1，R0=00310030H 
R3，R2=00330032H 

R5，R4=00410039H 

 

 
 

Î  R100=012FH
lates the summation for 32-bit data. 

 

z The left illustrates that three 32-bit registers starting from 
DR0, is calculated for their summation, and the result is 
stored into the DR100 register. 

  Î  R101，R100=00A5009BH 

9-3 



Arithmetical operation instructions 

FUN 25  
MEAN 

MEAN 
(Average of the block data) 

FUN 25  
MEAN 

25DP.MEAN

EN

N :

D :

S : ERROperation control N range error

 

S : Source register number 
N : Number of registers to be averaged 

(N units of successive registers starting from S） 

D : Register number for storing result (mean value) 
The S, N, D may combine with V, Z to serve indirect 
address application 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

2 
∣ 

256 

V 
、 
Z 

S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  ○ 
N ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
D  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  ○ 

 

z When operation control "EN" = 1 or "EN↑" (  instruction)  from 0 to 1, add the N successive 16-bit or 
32-bit (  instruction) numerical values starting from S, and then divided by N. Store this mean value 
(rounding off numbers after the decimal point) in the register specified by D. 

z While the N value is derived from the content of the register, if the N value is not between 2 and 256, then the 
N range error "ERR" will be set to 1, and do not execute the operation. 

X0
EN ERR

25P.MEAN

D :     R    10

N :             3
S :     R      0     

 

z At left, the example program gets the mean value of the 
3 successive 16-bit registers starting from R0, and stores 
the results into the 16-bit register R10 

 

 

R0 123  
R1 9  

S 
(N＝3) 

R2 788   123＋9＋788   

 
 ØX0＝  

 3 
＝306 （Rouding off the remainder） 

D R10 306  
 

9-4 



Arithmetical operation instructions 

FUN 26  
SQRT 

SQUARE ROOT 
FUN 26  

SQRT 

EN

26DP.SQRT

S :

D :

ERR S range errorOperation control

 

S : Source register to be taken square root  
D : Register for storing result  

(square root value) 
S, D may combine with V, Z to serve indirect 
address application 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

16/32-bit 
 

V 
、 
Z 

S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
D  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  ○ 

 

z When operation control "EN" = 1 or "EN↑" (  instruction) from 0 to 1, take the square root (rounding off 
numbers after the decimal point) of the data specified by the S field, and store the result into the register 
specified by D.  

z While the S value is derived from the content of the register, if the value is negative, then the S value error 
flag "ERR" will be set to 1, and do not execute the operation. 

EN
X0 26DP.SQRT

2147483647

D :     R     0

S : ERR

 

z The instruction at left calculates the square root of the 
constant 2147483647, and stores the result in R0. 

 

S K 2147483647 
 

 ØX0＝  

D R1 R0 46340 
 R1 R0 

 

9546340.2147483647 =  

 ↑ 

 rounding off 

9-5 



Arithmetical operation instructions 

FUN 27  
NEG 

NEGATION 
(Take the negative value) 

FUN 27  
NEG 

27DP

EN NEG DOperation control

 

D : Register to be negated 
D may combine with V, Z to serve indirect address 
application 

 
WY WM WS TMR CTR HR OR SR ROR DR XR Range 

Ope- 
rand 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

V 
、 
Z 

D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○ 

 

z When operation control "EN" = 1 or "EN↑" (  instruction) from 0 to 1, negate (ie. calculate 2's complement) 
the value of the content of the register specified by D, and store it back in the original D register. 

z If the value of the content of D is negative, then the negation operation will make it positive. 

27PX0
NEGEN R       0

 

z The instruction at left negates the value of the R0 
register, and stores it back to R0. 

 

D R0 12345 )3039H 
 

 ØX0＝  
 

D R0 −12345 )CFC7H 
 

9-6 



Arithmetical operation instructions 

FUN 28  
ABS 

ABSOLUTE 
(Take the absolute value) 

FUN 28  
ABS 

28DP

EN ABS DOperation control

 

D : Register to be taken absolute value 

D may combine with V, Z to serve indirect address 
application 

 
WY WM WS TMR CTR HR OR SR ROR DR XR Range 

Ope- 
rand 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

V 
、 
Z 

D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○ 

 

z When operation control "EN" = 1 or "EN↑" (  instruction) from 0 to 1, calculate the absolute value of the 
content of the register specified by D, and write it back into the original D register. 

X0
ABS
28DP

EN R       0

 

z The instruction at left calculates the absolute value of 
the R0 register, and stores it back in R0. 

 
D R1 R0 −12345 )CFC7H 

 
 ØX0＝  

 

D R1 R0 12345 )3039H 
 

9-7 



Arithmetical operation instructions 

FUN 29  
EXT 

SIGN EXTENSION 
FUN 29  

EXT 

EN EXT

29P

DOperation control
 

D : Register to be taken sign extension 
D may combine with V, Z to serve indirect address 
application 

 
WY WM WS TMR CTR HR OR SR ROR DR XR Range 

Ope- 
rand 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

V 
、 
Z 

D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○ 

 

z When operation control "EN" = 1 or "EN↑" (  instruction) from 0 to 1, this instruction will sign extent the 16 
bit numerical value specified by D to 32-bit value and store it into the 32-bit register comprised by the two 
successive words, D + 1 and D. (Both values are the same, only it was originally formated as a 16 bit 
numerical value, and was then extended to be formated as a 32 bit numerical value.) 

z This instruction extent the numerical value of a 16-bit register into an equivalent numerical value in a 32-bit 
register (for example 33FFH converts to 000033FFH), Its main function is for numerical operations 
(+,-,*,/,CMP......) which can take the 16 bit or 32 bit numerical values as operand. Before operation all the 
operand should be adjusted to the same length for proper operation. 

X0 29P
EXTEN R       0

 

z The instruction at left takes a 16 bit numerical value R0, 
and extends it to an equivalent value in 32 bits, then 
stores it into a 32 bit register (DR0=R1R0) comprised R0 
and R1 

 

R1 B15 R0 B0 

D R1 R0 Ignore the value of R1 before 
extension 1 1 0 0 1 1 1 1 1 1 0 0 0 1 1 1 －12345 

ØX0＝  

  B31     R1      B16 B15      R 0       B0 
D R1 R0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 1 1 1 －12345 

Fill B15 value into B31-B16,(if B15 is 0, then B31-B16 are all 0) 

Before extension（16 bits） R0=    CFC7H=−12345 
After extension（32 bits）R1R0=FFFFCFC7H=−12345 

The two numerical values are actually the same 
 

9-8 



Arithmetical instructions 

FUN 30 
PID 

General purpose PID operation  
(Brief description)  

FUN 30 
PID 

30.PID
A/M

BUM

D/R

ERR

HA

LA

Ts

OR

SR

PR
WR

:
:

:
:
:Direction

Bumpless

Mode Setting error

High alarm

Low alarm

 

 

Ts : PID Operation time interval 

SR : Starting register of process control 
parameter table comprised by 8 consecutive 
registers. 

OR : PID output register 

PR : Starting register of the process parameter 
table comprised by 7 consecutive registers. 

WR : Starting register of working variable for PID 
internal operation. It requires 7 registers and 
can’t be re-used in other part of the ladder 
program. 

HR ROR DR K Range 

Ope- 
rand 

R0 
∣ 

R3839 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 
 

Ts ○ ○ ○ 1〜3000 
SR ○ ○* ○  
OR ○ ○* ○  
PR ○ ○* ○  
WR ○ ○* ○  

z PID function according to the current value of process variable (PV) derived from the external analog signal 
and the setting value (SP) of process performs the calculation, which base on the PID formula. The result of 
calculation is the control output for the controlled process, which can feed directly to the AO module or other 
output interface or leaved for further process. The usage of PID control for process if properly can achieve a 
fast and smooth result of PV tracking toward SP change or immune to the disturbance of process. 

z The PID formula in digital form: 

Mn = [(1000/Pb)×En]+ ∑
0

n
 [(1000/Pb)×Ti×Ts×En]  −  [(1000/Pb)×Td×(PVn−PVn-1)/Ts] + Bias 

Mn   : Control output at time ”n” 

Pb  : Proportional band ( range : 2~5000, unit 0.1%. Kc (gain) =1000/ Pb ) 

Ti  : Intergal time constant ( range : 0~9999 corresponds to 0.00~99.99 Repeats/Minute ) 

Td  : Differential time constant ( range : 0~9999 corresponds to 0.00~99.99 Minutes ) 

PVn  : Process value at time ”n” 

PV n-1 : Process value at time ”n” 

En  :Error at time ”n” =set value ( SP) − process value at time ”n” (PVn) 

Ts  : Interval time of PID calculation ( range: 1~3000, unit : 0.01 S ) 

Bias  : Control output offset ( range: 0~4095 ) 

z For detail description of this function, please refer chapter 21.  
 

9-9 



Logical operation instruction 

FUN 35  
XOR 

EXCLUSIVE OR 
FUN 35  

XOR 

35DP.XOR

EN Sa:

Sb:

D :

D=0Operation control Result as 0

 

Sa : Source data a for exclusive or operation 

Sb : Source data b for exclusive or operation 

D : Register storing XOR results 

Sa, Sb, D may combine with V, Z to serve indirect 
address application 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

16/32bit 
+/- 

number 

V 
、 
Z 

Sa ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
Sb ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
D  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  ○ 

 

z When operation control "EN" = 1 or "EN↑" ( instruction) changes from 0 to 1, will perform the logical 
XOR (exclusive or) operation of data Sa and Sb. The operation of this function is to compare the 
corresponding bits of Sa and Sb (B0~B15 or B0~B31), and if bits at the same position have different status, 
then set the corresponding bit within D as 1, otherwise as 0. 

z After the operation, if all the bits in D are all 0, then set the 0 flag "D = 0" to 1. 

X0
EN

Sb:    R       1

D :    R       2

Sa:    R       0 

35P.XOR

D=0

 

z The instruction at left makes a logical XOR operation 
using the R0 and R1 registers, and stores the result 
in R2. 

 

Sa R0 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 
Sb R1 1 1 1 0 1 1 1 0 1 0 1 0 0 1 1 0 

ØX0＝  

D R2 0 1 0 1 0 1 0 1 1 1 0 0 1 0 1 1 
 

9-10 



Logical operation instructions 

FUN 36  
XNR 

ENCLUSIVE OR 
FUN 36  

XNR 

36DP.XNR

D :

EN Sa:

Sb:

D=0Operation control result as 0

 

Sa : Data a for XNR operation 

Sb : Data b for XNR operation 

D : Register storing XNR results 

Sa, Sb, D may combine with V, Z to serve indirect 
address application 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

16/32-bit 
± number 

V 
、 
Z 

Sa ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
Sb ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
D  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  ○ 

 

● When operation control "EN" = 1 or "EN↑" (  instruction) changes from 0 to 1, will perform the logical 
XNR (inclusive or) operation of data Sa and Sb. The operation of this function is to compare the 
corresponding bits of Sa and Sb (B0~B15 or B1~B31), and if the bit has the same value, then set the 
corresponding bit within D as 1. If not then set it to 0. 

● After the operation, if the bits in D are all 0, then set the 0 flag "D=0" to 1. 

EN
X0

D :    R       2

36P.XNR

Sa:    R       0 
Sb:    R       1

D=0

 

z The instruction at left makes a logical XNR operation 
of the R0 and R1 registers, and the results are stored 
in the R2 register. 

 

Sa R0 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 
Sb R1 1 1 1 0 1 1 1 0 1 0 1 0 0 1 1 0 

ØX0＝  

D R2 1 0 1 0 1 0 1 0 0 0 1 1 0 1 0 0 
 
 
 
 
 
 

9-11 



Comparison instructions 

FUN 37  
ZNCMP 

ZONE COMPARE 
FUN 37  

ZNCMP 

EN

37DP.ZNCMP

S   :

S   :

S   :

S<L

ERR

S>U

INZOperation control Inside zone

Higher than upper limit

Lower than lower limit

Limit value error

 

S  : Register for zone comparison 

SU : The upper limit value  

SL : The lower limit value  

S, SU, SL may combine with V, Z to 
serve indirect address application 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

16/32-bit 
+/- 

number 

V 
、 
Z 

S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  ○ 
SU ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
SL ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

 

z When operation control "EN" = 1 or "EN↑" (  instruction) changes from 0 to 1, compares S with upper 
limit SU and lower limit SL. If S is between the upper limit and the lower limit (SL≦S≦SU), then set the 
inside zone flag "INZ" to 1. If the value of S is greater than the upper limit SU, then set the higher than 
upper limit flag "S>U" to 1. If the value of S is smaller then the lower limit SL, then set the lower than lower 
limit flag  "S<L" as 1. 

z The upper limit SU should be greater than the lower limit SL. If SU<SL, then the limit value error flag "ERR" 
will set to 1, and this instruction will not carry out. 

ERR

37P.ZNCMP

EN
X0

INZ

S>U

S<L

Y0
S   :     R         0

S   :     R         1

S   :     R         2

 

z The instruction at left compares the value of R0 with the 
upper and lower limit zones formed by R1 and R2. If the 
values of R0~R2 are as shown in the diagram at bottom 
left, then the result can then be obtained as at the right 
of this diagram. 

z If want to get the status of out side the zone, then OUT 
NOT Y0 may be used, or an OR operation between the 
two outputs S>U and S<L may be carried out, and 
move the result to Y0. 

 
S R0 200  
SU R1 300 （Upper limit value） X0＝  
SL 

R2 100 
（Lower limit value）  ) 

Y0 
 1  

 

 
Before-execution  

 Results of execution 

 

9-12 



Data movement instructions 

FUN 40  
BITRD 

BIT READ  
FUN 40  

BITRD 

N :
ERR

40DP.BITRD

EN S : OTBOperation control Output bit

N value error

 

S : Source data to be read 

N : The bit number of the S data to be read out.  

S, N may combine with V, Z to serve indirect 
address application 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

16/32-bit 
+/- number 

V 
﹑ 
Z 

S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
N ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 0〜31 ○ 

 

z When read control "EN" = 1 or "EN↑" (  instruction) changes from 0 to 1, take the Nth bit of the S data 
out , and put it to the output bit "OTB". 

z When read control "EN" = 0 or "EN↑" (  instruction) is not change from 0 to 1, The output “OTB” can be  
selected to keep at the last state( if M1919=0 ) or set to zero ( if M1919=1 ). 

z When the operand is 16 bit, the effective range for N is 0~15. For 32 bit operand (  instruction) it is 0~31. 
N beyond this range will set the N value error flag "ERR" to 1, and do not carry out this instruction.  

S  :    WX         0

40P.BITRDX0
EN

ERR

OTB
Y0

N :     7

 

z The instruction at left reads the 7th bit (X7) status from 
WX0 (X0~X15) and output to Y0. The results are as 
follows: 

 X15 X7 X0 
S WX0 1 1 0 0 1 1 1 0 1 0 0 1 1 0 0 1 

 

 N＝7――――――――――   ØX0＝  

Y0 1 
 

 

9-13 



Data movement instructions 

FUN 41  
BITWR 

BIT WRITE 
FUN 41  

BITWR 

41DP.BITWR

D :

N :
INB

EN ERRWrite control N value error

Write bit
 

D : Register for bit write 

N : The bit number of the D register to be 
written. 

D, N may combine with V, Z to serve indirect 
address application 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

0    0 
∣ or ∣ 
15    31 

V 
、 
Z 

D  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  ○ 
N ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

 

z When write control "EN" = 1 or "EN↑" (  instruction) changes from 0 to 1, will write the write bit (INB) into 
the Nth bit of register D. 

z When the operand is 16 bit, the effective range of N is 0~15. For 32 bit (  instruction) operand it is 0~31. 
N beyond this range, will set the N value error flag "ERR" to 1, and do not carry out this instruction. 

41P.BITWR

D :      R         0

INB

EN

X1

X0
ERR

N :      3

 

z The instruction at left writes the status of the write bit 
INB into B3 of R0. Assuming  
X1 = 1, the result will be as follows: 

 
X1 1 

N＝3―――――――――――――  ØX0＝  

D R0            1    
 B15 B3 B0 
 Bits other than B3 remain unchanged 

9-14 



Data movement instructions 

FUN 42  
BITMV 

BIT MOVE 
FUN 42  

BITMV 

42DP.BITMV

D  :

Ns :

S   :

Nd:

EN ERRMove control N value error

 

S : Source data to be moved 

Ns : Assign Ns bit within S as source bit 

D : Destination register to be moved 

Nd : Assign Nd bit within D as target bit  

S, Ns, D, Nd may combine with V, Z to serve 
indirect address application 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

16/32-bit 
+/- number 

V 
、 
Z 

S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
Ns ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 0〜31 ○ 
D  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  ○ 

Nd ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 0〜31 ○ 

 

z When move control "EN" = 1 or "EN↑" (  instruction) changes from 0 to 1, will move the bit status 
specified by Ns within S into the bit specified by Nd within D. 

z When the operand is 16 bit, the effective range of N is 0~15. For 32 bit (  instruction) operand the effective 
range is 0~31. N beyond this range will set the N value error flag "ERR" to 1, and do not carry out this 
instruction. 

X0
S   :  WX       0

D  :    R         0

42P.BITMV
EN

Ns :   11

ERR

Nd:    7

 

z The instruction at left moves the status of B11 (X11) 
within S into the B7 position within D. Except bit B7, 
other bits within D does not change. 

 X15 X11 X0 
S WX0     1            

 

 Ns＝11―――――  

 ØX0＝  

 Nd＝7 ――――――――  

D R0         1        
 B15 B7 B0 

9-15 



Data movement instructions 

FUN 43  
NBMV 

NIBBLE MOVE 
FUN 43  

NBMV 

43DP.NBMV

Nd:

S   :

D  :

Ns :

EN ERRMove control N value error

 

S : Source data to be moved 
Ns: Assign Ns nibble within S as source nibble 
D : Destination register to be moved 
Nd: Assign Nd nibble within D as target nibble 
S, Ns, D, Nd may combine with V, Z to serve 
indirect address application 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

16/32-bit 
+/- 

number 

V 
、 
Z 

S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
Ns ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 0〜7 ○ 
D  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  ○ 

Nd ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 0〜7 ○ 
 

z When move control "EN" = 1 or "EN↑" (  instruction)has a transition from 0 to 1, will move the Ns’th 
nibble from within S to the nibble specified by Nd within D. (A nibble is comprised by 4 bits. Starting from the 
lowest bit of the register, B0, each successive 4 bits form a nibble, so B0~B3 form nibble 0, B4~B7 form 
nibble 1, etc...)  

z When the operand is 16 bit, the effective range of Ns or Nd is 0~3. For 32 bit (  instruction) operand the 
range is 0~7. Beyond this range, will set the N value error flag "ERR" to 1 , and do not carry out this 
instruction. 

X0 43P.NBMV
EN ERRS

Ns

D

Nd

:   R        0

:   2

:   R        1

:   1

 

z The instruction at left moves the third nibble NB2 
(B8~B11) within S to the first nibble NB1 (B4~B7) within 
D. Other nibbles within D remain unchanged.  

 B15 B0 
S R0     1 1 0 1         

 NB3 NB2 NB1 NB0 

 Ns＝2 ―――――――  

 ØX0＝  

 Nd＝1 ―――――――――  

 NB3 NB2 NB1 NB0 

D R1         1 1 0 1     
 B15 B0 

9-16 



Data movement instructions 

FUN 44  
BYMV 

BYTE MOVE 
FUN 44  

BYMV 

S   :

D  :

Nd:

Ns :

44DP.BYMV
EN ERRMove control N value error

 

S  : Source data to be moved 

Ns : Assign Ns byte within S as source byte 

D  : Destination register to be moved 

Nd : Assign Nd byte within D as target byte 

S, Ns, D, Nd may combine with V, Z to serve 
indirect address application 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

16/32-bit 
+/- number 

V 
、 
Z 

S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
Ns ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 0〜3 ○ 
D  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  ○ 

Nd ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 0〜3 ○ 

 

z When move control "EN" = 1 or "EN↑" (  instruction) has a transition from 0 to 1, move Nsth byte within S 
to Ndth byte position within D. (A byte is comprised of 8 bits. Starting from the lowest bit of the register, B0, 
each successive eight bits form a byte, so B0~B7 form byte 0, B8~B15 form byte 1, etc...) 

z When the operand is 16 bit, the effective range of Ns or Nd is 0~1. For 32 bit (  instruction) operand, the 
range is 0~3. Beyond this range, will set the N value error flag "ERR" to 1, and do not carry out this 
instruction. 

EN
X0 44DP.BYMV

ERRS

Ns

D

Nd

:    R       0

:    1

:    R       2

:    2

 

z The instruction at left moves the third byte (B16~B23) 
within S (32 bit register composed of R1R0), to the first 
byte within D (32 bit register composed of R3R2). Other 
bytes within D remain unchanged. 

 B15 B0 
S R1 R0         1 0 1 1 1 0 1 1                 

 Byte3 Byte2 Byte1 Byte0 

 Ns＝2――――――――――――――  
 ØX0＝  

 Nd＝1――――――――――――――――――――  

 Byte3 Byte2 Byte1 Byte0 

D R3 R2                 1 0 1 1 1 0 1 1         
 B31 B0 

9-17 



Data movement instructions 

FUN 45  
XCHG 

EXCHANGE 
FUN 45  

XCHG 

45DP.XCHG

EN

Db:

Da:Exchange control

 

Da : Register a to be exchanged 

Db : Register b to be exchanged 

Da, Db may combine with V, Z to serve indirect address 
application 

 
WY WM WS TMR CTR HR OR SR ROR DR XR Range 

Ope- 
rand 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

V 
、 
Z 

Da ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○ 
Db ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○ 

 

z When exchange control "EN" = 1 or "EN↑" (  instruction) has a transition from 0 to 1, will exchanges the 
contents of register Da and register Db in 16 bits or 32 bits (  instruction) format.   

X0

Db:   R      1

45P.XCHG

EN Da:   R      0

 

z The instruction at left exchanges the contents of the 
16-bit R0 and R1 registers. 

 B15 B0 
Da R0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Db R1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

ØX0＝  

 B15 B0 
Da R0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
Db R1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

9-18 



Data movement instructions 

FUN 46  
SWAP 

BYTE SWAP 
FUN 46  

SWAP 

SWAPEN

46P

DSwap control

 

D : Register for byte data swap 

D may combine with V, Z to serve indirect address application 

 
WY WM WS TMR CTR HR OR SR ROR DR XR Range 

Ope- 
rand 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

V 
、 
Z 

D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○ 

 

z When swap control "EN" = 1 or "EN↑" (  instruction) has a transition from 0 to 1, swap the data of the low 
byte, Byte 0 (B0~B7), and the high byte, Byte 1 (B8~B15), in the 16 bit register specified by D. 

 

B15 B8 B7 B0 
Byte 1（high） Byte 0（low） 

 

0
X0

SWAPEN

46P

R

 

z The instruction at left swaps the data of the low byte 
(B0~B7) and the high byte (B8~B15) in R0. The results 
are as follows: 

 Byte1 Byte0 
  

D R0 0 0 1 1 0 0 1 1 1 1 1 1 0 0 0 0 
 B15 B8 B7 B0 

ØX0＝  

 B15  B0 
D R0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 1 1 

 

9-19 



Data movement instructions 

FUN 47  
UNIT 

NIBBLE UNITE 
FUN 47  

UNIT 

N :
D  :

EN

47P.UNIT

S  : ERRUnite control N value error

 

S : Starting source register to be united 

N : Number of nibbles to be united 

D : Registers storing united data 

S, N, D may combine with V, Z to serve indirect 
address application 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

1 
∣ 
4 

V 
、 
Z 

S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  ○ 
N ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
D  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  ○ 

 

z When unite control "EN" = 1 or "EN↑" (  instruction) has a transition from 0 to 1, take out the lowest 
nibbles NB0, of N successive registers starting from S, and fill them into NB0, NB1, .....NBn-1 of D in 
ascending order. Nibbles not yet filled in D (when N is odd) are filled with 0.  (A nibble is comprised by 4 bits. 
Starting from the lowest bit in the register, B0, each successive four bits form a nibble, so B0~B3 form nibble 
0, B4~B7 form nibble 1, etc...). 

z This instruction only provides WORD (16 bit) operand. Because of this, there are usually only 4 nibbles can 
be involved. Therefore the effective range of N is 1~4. Beyond this range, will set the N value error flag 
"ERR" to 1, and do not carry out this instruction. 

N

X0
S

47P.UNIT

EN ERR:   R         0

:   3
:   WY     0D

 

z The instruction at left takes out NB0 from 3 registers, R0, 
R1 and R2, and fills them into NB0~NB2 within WY0 
register. 

 
  N＝3 

 NB3 NB2 NB1 NB0 
D W Y 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1  

 Y15 Y0 
 Set the not united NB as 0 
 B15 B12 B11 B8 B7 B4 B3 B0 

 S R0    0 0 0 1 
N＝3 S＋1 R1    0 0 1 0 
 S＋2 R2    0 1 0 0 
 Ö 
 NB3 NB2 NB1 NB0 X0＝  

9-20 



Data movement instructions 

FUN 48  
DIST 

NIBBLE DISTRIBUTE 
FUN 48  

DIST 

S  :

48P.DIST

D :
N :

EN ERRDistribution control N value error

 

S : Source data to be distributed 
N : Number of nibbles to be distributed 
D : Starting register storing distribution data 
S, N, D may combine with V, Z to serve 
indirect address application 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

16-bit 
+/- 

number 

V 
、 
Z 

S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
N ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 1~4 ○ 
D  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  ○ 

 

z When distribution control "EN" = 1 or "EN↑" (  instruction) has a transition from 0 to 1, will take N 
successive nibbles starting from the lowest nibble NB0 within S, and distribute them in ascending order into 
the 0 nibbles of N registers starting from D. The nibbles other than NB0 in each of the registers within D are 
all set to zero. (A nibble is comprised by 4 bits. Starting from the lowest bit in a register, B0, each successive 
4 bits form a nibble, so B0~B3 form nibble 0, B4~B7 form nibble 1, etc...) 

z This instruction only provides WORD (16 bit) operand. Therefore there are usually only 4 nibbles can be 
involved, so the effective value of N is 1~4. Beyond this range, will set the N value error flag "ERR" to 1, and 
do not carry out this instruction. 

X0 48P.DIST

EN ERRS

N
D

:    WX        0

:     3
:     R           0

 

z The instruction at left writes NB0~NB2 from the WX0 
register into the NB0 of the 3 consecutive registers 
R0~R2. 

 
    N=3      NB3 NB2 NB1 NB0 
  X15 X11  X0     B15   B0 

S WX0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1   D R0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
  NB3 NB2 NB1 NB0   D+1 R1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
       D+2 R2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
     Ö  
     X0＝   

NB1〜NB3 are all set a  "0 " 

 

9-21 



Shifting/Rotating instructions 

FUN 51  
SHFL 

SHIFT LEFT 
FUN 51  

SHFL 

D  :

N :

51DP.SHFL

INB

EN

ERR

OTB

Shift in bit

Shift control

N value error

Shift−out bit

 

D : Register to be shifted 

N : Number of bits to be shifted 

N, D may combine with V, Z to serve indirect 
address application 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

1     1 
∣ or ∣ 
16    32 

V 
、 
Z 

D  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  ○ 
N ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

 

z When shift control "EN" = 1 or "EN↑" (  instruction) has a transition from 0 to 1, will shift the data of the D 
register towards the left by N successive bits (in ascending order). After the lowest bit B0 has been shifted 
left, its position will be replaced by shift-in bit INB, while the status of shift-out bits B15 or B31 (  instruction) 
will appear at shift-out bit "OTB". 

z If the operand is 16 bit, the effective range of N is 1~16. For 32 bits (  instruction) operand, it is 1~32. 
Beyond this range, will set the N value error flag "ERR" to 1, and do not carry out this instruction. 

X0
D  :    R         0

51P.SHFL

INB

EN OTB

ERR

Y0

N :     4

 

z The instruction at left shifts the data in register R0 
towards the left by 4 successive bits. The results are 
shown below. 

 Y0 B15 R0 B0 INB 
 ← 0 0 1 1 0 0 1 0 1 1 1 1 0 0 0 0 ← 1 
     *              △ 

ØX0＝  

 Y0 B15 R0 B0 INB 
1  0 0 1 0 1 1 1 1 0 0 0 0 1 1 1 1  1 
*              △ △ △ △  △ 

 

9-22 



Shifting/Rotating instructions 

FUN 52  
SHFR 

SHIFT RIGHT 
FUN 52  

SHFR 

EN

INB ERR

OTB
52DP.SHFR

D  :

N :

Shift control

Shift in bit

Shift−out bit

N value error

 

D : Register to be shifted 

N : Number of bits to be shifted 

D, N may combine with V, Z to serve indirect 
address application 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

1     1 
∣ or ∣ 
16    32 

V 
、 
Z 

D  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  ○ 
N ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

 

z When shift control "EN" = 1 or "EN↑" (  instruction) has a transition from 0 to  1, will shift the data of D 
register towards the right by N successive bits (in descending order). After the highest bits, B15 or B31 (  
instruction) have been shifted right, their positions will be replaced by the shift-in bit INB, while shift-out bit 
B0 will appear at shift-out bit "OTB". 

z If the operand is 16 bit, the effective range of N is 1~16. For 32 bits (  instruction) operand, it is 1~32. 
Beyond this range, will set the N value error flag "ERR" to 1, and do not carry out this instruction. 

OTB

ERR

X0
EN

INB

D  :    R          0

N  :    15

52P.SHFR Y0

 

z The instruction at left shifts the data in R0 register 
towards the right by 15 successive bits. The 
results are shown below. 

 INB B15 R0 B0 Y0 
0 → 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 →  
△   *                 

ØX0＝  

 INB B15 R0 B0 Y0 
0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  0 
△  △ △ △ △ △ △ △ △ △ △ △ △ △ △ △   * 

 

9-23 



Shifting/Rotating instructions 

FUN 53  
ROTL 

ROTATE LEFT 
FUN 53  

ROTL 

EN

53DP.ROTL

N :

D  :Rotate control OTB

ERR

Rotate−out bit

N value error
 

D : Register to be rotated 

N : Number of bits to be rotated 

D, N may combine with V, Z to serve indirect 
address application 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

1     1 
∣ or ∣ 
16    32 

V 
、 
Z 

D  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  ○ 
N ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

 

z When rotate control "EN" = 1 or "EN↑" (  instruction) has a transition from 0 to 1, will rotate the data of D 
register towards the left by N successive bits (in ascending order, ie. in a 16-bit instruction, B0→B1, B1→
B2, .... , B14→B15, B15→B0. In a 32-bit instruction, B0→B1, B1→B2, .... , B30→B31, B31→B0). At the 
same time, the status of the rotated out bits B15 or B31 (  instruction) will appear at rotate-out bit "OTB". 

z If the operand is 16 bit, the effective range of N is 1~16. For 32 bits (  instruction) operand, it is 1~32. 
Beyond this range, will set the N value error flag "ERR" to 1, and do not carry out this instruction. 

OTB

ERR

X0
EN

53P.ROTL

D  :    R          0
Y0

N  :    9

 

z The instruction at left rotates data from the R0 
register towards the left 9 successive bits. The 
results are shown below. 

  R0 B0 
1 1 1 1 0 0 0 0 1 0 1 0 1 0 1 0 

        *        

 Y0 

ØX0＝  

 B15 R0 B0 
0 1 0 1 0 1 0 1 1 1 1 0 0 0 0 1 

               * 
1 Y0 
*  

 

9-24 



Shifting/Rotating instructions 

FUN 54  
ROTR 

ROTATE RIGHT 
FUN 54  

ROTR 

EN

54DP.ROTR

D  :

N :
ERR

OTBRotate control Rotate−out bit

N value error

 

D : Register to be rotated 

N : Number of bits to be rotated 

D, N may combine with V, Z to serve indirect 
address application 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

1     1 
∣ or ∣ 
16    32 

V 
、 
Z 

D  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  ○ 
N ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

 

z When rotate control "EN" = 1 or "EN↑" (  instruction) has a transition from 0 to 1, will rotate the bit data of 
D register towards the right by N successive bits (in descending order, ie. in a 16-bit instruction, B15→B14, 
B14→B13, .... , B1→B0, B0→B15. In a 32-bit instruction, B31→B30, B30→B29, .... , B1→B0, B0→B31). At 
the same time, the status of the rotated out B0 bits will appear at the rotate-out bit "OTB". 

z If the operand is 16 bit, the effective range of N is 1~16. For 32 bits (  instruction) operand, it is 1~32. 
Beyond this range, will set the N value error flag "ERR" to 1, and do not carry out this instruction. 

OTB

ERR

EN
X0

D  :    R          0

54P.ROTR Y0

N  :    8

 

z The instruction at left rotates data from R0 register 
towards the right 8 successive bits. The results are 
shown below. 

 
 B15 R0 B0 

1 1 1 1 0 0 0 0 1 0 1 0 1 0 1 0 
        *        

             Y0  

ØX0＝  

 B15 R0 B0 
1 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0 
*                

             Y0 1 
               * 

 

9-25 



Code conversion instructions 

FUN 57  
DECOD 

DECODE 
FUN 57  

DECOD 

57P.DECOD

SEN
:N

:

:N

D

: ERRDecode control Range error

 

S : Source data register to be decoded  
(16 bits) 

NS : Starting bits to be decoded within S 
NL : Length of decoded value (1~8 bits) 
D : Starting register storing decoded results 

(2~256 points = 1~16 words) 
S, NS, NL, D may combine with V, Z to serve 
indirect address application 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

16-bit 
+/- number 

V 
、 
Z 

S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
NS ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 0〜15 ○ 
NL ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 1〜8 ○ 
D  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  ○ 

 
● This instruction, will set a single bit among the total of 2NL discrete points (D) to 1 and the others bit are set to 

0. The bit number to be set to 1 is specified by the value comprised by BNS〜BNS+NL−1 of S（which is called 
the decode value, BNS is the starting bit of the decode value, and BNS+NL−1 is the end value）,. 

● When decode control "EN" = 1 or "EN↑" (  instruction) has a transition from 0 to 1, will take out the value 
BNS〜BNS+NL−1 from S. And with this value to locate the bit position and set D accordingly, and set all the 
other bit to zero 

● This instruction only provides 16 bit operand, which means S only has B0~B15. Therefore the effective range 
of Ns is 0~15, and the NL length of the decode value is limited to 1~8 bits. Therefore the width of the decoded 
result D is 21〜8 points = 2~256 points = 1~16 words (if 16 points are not sufficient, 1 word is still occupied). If 
the value of NS or NL is beyond the above range, will set the range-error flag "ERR" to 1, and do not carry out 
this instruction. 

● If the end bit value exceeds the B15 of S, then will extend toward B0 of S + 1. However if this occurs then 
S+1 can’t exceed the range of specific type of operand (ie. If S is of D type register then S+1 can’t be D3072). 
If violate this, then this instruction only takes out the bits from starting bit BNs to its highest limit as the decode 
value.  

X0 57P.DECOD

SEN

D

N

N

ERR:   WX         0
:    3

:    5

:    R            2

 

z The instruction at left takes out the data of five 
successive bits from X3 to X7 within the WX0 
register and decodes it. The results are then stored 
in the 32-bit register starting at R2. 

 X15 X7 X3 X0 
 S 0 0 1 1 0 0 0 0 0 1 0 0 1 1 1 0 

Length of decode value NL=5,so bit value is formed by X7~X3 (equal 9) 

ØX0＝  
 R3 R2 

D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
 B31 B9 B0 

Because NL=5,the width of D is 25= 32 point = 2 word. That is, D is formed by R3R2, and the decoded value is 
01001=9, therefore B9 (the 10th point) within D is set to 1, and all other points are 0. 

9-26 



Code conversion instructions 

FUN 58  
ENCOD 

ENCODE 
FUN 58  

ENCOD 

58P.ENCOD

H/L N :

:D

SEN :
:N

ERR

D=0Encode control

High/Low priority Range error

All is 0

 

S : Starting register to be encoded 
NS : Bit position within S as the encoding start 

point  
NL : Number of encoding discrete points (2~256) 
D  : Number of register storing encoding results 

 (1 word) 
S, NS, NL, D may combine with V, Z to serve 
indirect address application 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

16-bit 
+/- 

number 

V 
、 
Z 

S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  ○ 
NS ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 0〜15 ○ 
NL ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 2〜256 ○ 
D  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  ○ 

 

● When encode control "EN" = 1 or "EN↑" (  instruction) has a transition from 0 to 1, will starting from the 
points specified by Ns within S, take out towards the left (high position direction) NL number of successive bits 
BNS〜BNS+NL−1 (BNS is called the encoding start point, and its relative bit number is b0;BNS+NL−1 is called 
the encoding end point, and its relative bit number is BNL-1). From left to right do higher priority (when H/L=1)  
encoding or from right to left do lower priority (when H/L=0) encoding (i.e. seek the first bit with the value of 1, 
and the relative bit number of this point will be stored into the low byte (B0~B7) of encoded resultant register 
D, and the high byte of D will be filled with 0. 

 （bNL−1） （bH） （bL） （b0）← Relative bit number 
 BNS＋NL−1 BNS 
 ↓ B15 ↓ B1 B0 

← …Direction of extension… 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1       S 

 High Total NL discrete points Low 

High priority search direction Ø Low priority search direction 

D 0 0 0 0 0 0 0 0 H or L 

● As shown in the diagram above, for high priority encoding, the bit first to find is bH (with a value of 12), and for 
low priority encoding, the bit first to find bL (with a value of 4). Among the NL discrete points there must be at 
least one bit with value of 1. If all bits are 0, will not to carry out this instruction, and the all zero flag "D=0" will 
set to 1. 

● Because S is a 16-bit register, Ns can be 0~15, and is used to assign a point of B0~B15 within S as the 
encoding start point (b0). The value of NL can be 2~256, and it is used to identify the encoding end point, i.e. it 
assigns NL successive single points starting from the start point (b0) towards the left (high position direction) 
as the encoding zone (i.e. b0〜bNL−1). If the value of Ns or NL exceeds the above value, then do not carry out 
this instruction, and set the range-error flag "ERR" as 1. 

 

9-27 



Code conversion instructions 

FUN 58  
ENCOD 

ENCODE 
FUN 58  

ENCOD 

● If the encoding end point (bNL−1) beyond the B15 of S, then continue extending towards S+1, S+2, but it must 
not exceed the range of specific type of operand. If it goes beyond this, then this instruction can only take the 
discrete points between b0 and the highest limit into account for encoding.  

 

X0 58P.ENCOD

H/L N

D

SEN

N

ERR

D=0:    R          0
:        9

:      36

:   WY       0

 

z The instruction at left is a high priority encode example. 
When X0 goes from 0 to 1, will take out toward left 36 
successive bits starting from B9 (b0) specified by Ns 
within S, and perform high priority encoding (because 
H/L = 1). That is, starting from b35 (encoding end point), 
move right to find the first bit with the value of 1. The 
resultant value of this example is b26, so the value of D 
is 001AH=26, as shown in the diagram below. 

 
 

 S D 
  (b0) 
 B15 B9 B0 

R0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  Y15             Y0 
R1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 WY0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 
R2 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 

X0＝  

Ö 
 

 B47 B44 
（b35）      ↑ 

（b26） 
B32   High byte always  

fill with "0" 
＝26 

（encode value） 

 The first bit with the value of 1 
for high priority encoding 

                   

 

9 -28 



Code conversion instructions 

FUN 59  
→7SG 

7-SEGMENT CONVERSION 
FUN 59  

→7SG 

EN ERR
7SG

:
:
:

59P.

S

N
D

Conversion control N value error

 

S : Source data to be converted 

N : The nibble number within S for conversion 

D : Register storing 7-segment result 

S, N, D may combine with V, Z to serve indirect 
address application 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

16-bit 
+/- 

number 

V 
、 
Z 

S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
N ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 0〜3 ○ 
D  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  ○ 

 

● When conversion control "EN" = 1 or "EN↑" (  instruction) has a transition from 0 to 1, will convert N+1 
number of nibbles (A nibble is comprised by 4 successive bits, so B0~B3 of S form nibble 0, B4~B7 form 
nibble 1, etc...)within S to 7-segment code, and store the code into a low byte of D (High bytes does not 
change). The 7 segment within D are put in sequence, with "a" segment placed at B6, "b" segment at 
B5, .... ,"g" segment at B0. B7 is not used and is fixed as 0. For details please refer the "7-segment code 
and display pattern table" shown in page 9-31.  

● Because this instruction is limited to 16 bits, and S only has 4 nibbles (NB0~NB3), the effective range of N 
is 0~3. Beyond this range, will set the N value flag error "ERR" to 1, and does not carry out this instruction. 

● Care should be taken on total nibbles to be converted is N+1. N=0 means one digit to convert, N=1 means 
two digits to convert etc… 

● When using the FATEK 7-segment expansion module(FB-7SG) and the FUN84 (7SEG0) handy instruction 
for mixing decoding and non-decoding application, FUN59 and FUN84 can be combined to simplify the 
program design.(Please refer the example in chapter 17) 

 

9-29 



Code conversion instructions 

FUN 59  
→7SG 

7-SEGMENT CONVERSION 
FUN 59  

→7SG 

〈Example 1〉When M1 OFF→ON, convert hexadecimal to 7-Segment 

M1

: 0
: R100D

N

SEN : R0
59P. 7SG

ERR

 

˙Figure left shown the conversion of first digit(nibble) of 
R0 to 7-segment and store in low byte of R100, the 
high byte of R100 remain unchanged. 

 Original R100＝0000H 
 R0＝0001H Î R100＝0030H（1） 

〈Example 2〉When M1 ON, convert the hexadecimal to 7-Segment 

: R100D

M1

: 1
: R0EN

59.

S

N

7SG
ERR

 

˙Instruction at left will convert the first and the second 
digit of R0 to 7-segment and store in R100. 

˙The low byte of R100 stores first digit. 
˙The high byte of R100 stores second digit. 

 R0＝0056H Î  R100＝5B5FH（56） 

〈Example 3〉When M1 ON, converting hexadecimal to 7-Segment 

M1

N

S

59.

D

EN

7SG

: R100
: 2
: R0 ERR

 

˙Instruction at left will convert the first, second and 
third digit of R0 to 7-segment and store in R100 and 
R101. 

˙The low byte of R100 stores first digit.  
˙The high byte of R100 stores second digit. 
˙The low byte of R101 stores third digit. 
˙The high byte of R10 remain unchanged. 

 Original R101=0000H 
 R0=0A48H Î R100=337FH（48） 
 R101=0077H（A） 

〈Example 4〉When M1 ON, convert hexadecimal to 7-Segment 

M1

: 3
: R0

: R100

SEN

N
D

59. 7SG
ERR

 

˙Instruction at left will convert 1~4 digit of R0 to 
7-segment and store in R100 and R101.  

˙The low byte of R100 stores first digit.  
˙The high byte of R100 stores second digit.  
˙The low byte of R101 stores third digit.  
˙The high byte of R10 stores 4th digit. 

 R0=2790H Î R100=7B7EH（90） 
 R101=6D72H（27） 

9-30 



Code conversion instructions 

FUN 59  
→7SG 

7-SEGMENT CONVERSION 
FUN 59  

→7SG 

 
 

Nibble data of S Low byte of D 

Hexadecimal 
number 

Binary 
number 

7-segment  
display format B7 

z 
B6 
a 

B5 
b 

B4 
c 

B3 
d 

B2 
e 

B1 
f 

B0 
g 

Display 
pattern 

0 0000 0 1 1 1 1 1 1 0 

1 0001 0 0 1 1 0 0 0 0 

2 0010 0 1 1 0 1 1 0 1 

3 0011 0 1 1 1 1 0 0 1 

4 0100 0 0 1 1 0 0 1 1 

5 0101 0 1 0 1 1 0 1 1 

6 0110 0 1 0 1 1 1 1 1 

7 0111 0 1 1 1 0 0 1 0 

8 1000 0 1 1 1 1 1 1 1 

9 1001 0 1 1 1 1 0 1 1 

A 1010 0 1 1 1 0 1 1 1 

B 1011 0 0 0 1 1 1 1 1 

C 1100 0 1 0 0 1 1 1 0 

D 1101 0 0 1 1 1 1 0 1 

E 1110 0 1 0 0 1 1 1 1 

F 1111 

B7d

B1

B2 e

f

B0
g

B6
a

c

b

B4

B5

P  

0 1 0 0 0 1 1 1 

7-segment display pattern table 

9-31 

B3



Code conversion instructions 

FUN 60  
→ASC 

ASCII CONVERSION 
FUN 60  

→ASC 

60P.

D

EN S

:

ASC
:Conversion control

 

S : Alphanumerics to be converted into ASCII code 

D : Starting register storing ASCII results 

 
WY WM WS TMR CTR HR OR SR ROR DR Alphanumeric Range 

Ope- 
rand 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

1〜12 
alphanumeric 

S           ○ 
D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○  

 

● When conversion control "EN" = 1 or "EN↑" (  instruction) has a transition from 0 to 1, will convert 
alphabets and numbers stored in S (S has a maximum of 12 alphanumeric character) into ASCII and store 
it into registers starting from D. Each 2 alphanumeric characters occupy one 16-bit register. 

● The application of this instruction, most often, stores alphanumeric information within a program, and waits 
until certain conditions occur, then converts this alphanumeric information into ASCII and conveys it to 
external display devices which can accept ASCII code. 

X0
:    ABCDEF

60P.

:    R         0D

EN S

ASC

 

z The instruction at left converts the 6 alphabets 
-ABCDEF into ASCII then stores it into 3 successive 
registers starting from R0. 

 S D 
 High Byte Low Byte 

R0 42（B） 41（A） 
R1 44（D） 43（C） 

Alphabet 
ABCDEF 

X0＝  

Ö 
R2 46（F） 45（E） 

 

9-32 



 Code conversion instructions 

FUN 61  
→SEC 

Hour:Minute:Second to Seconds Conversion  
FUN 61  

→SEC 

S

61P.

D

EN

SEC
:

:

D=0 Result as 0Conversion control

 

S : Starting calendar data register to be 
converted 

D : Starting register storing results 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

－117968399 
∣ 

117964799 
S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
D  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  

 

z When conversion control "EN" = 1 or "EN↑" (  instruction) has a transition from 0 to 1, will convert the 
hour: minute: second data of S~S+2 into an equivalent value in seconds and store it into the 32-bit register 
formed by combining D and D+1. If the result = 0, then set the "D = 0" flag as 1. 

z Among the FB-PLC instructions, the hour: minute: second time related instructions (FUN61 and 62) use 3 
words of register to store the time data, as shown in the diagram below. The first word is the second register, 
the second word is the minute register, and finally the third word is the hour register, and in the 16 bits of 
each register, only B14~B0 are used to represent the time value. While bit B15 is used to express whether 
the time values are positive or negative.  When B15 is 0, it represents a positive time value, and when B15 
is 1 it represents a negative time value. The B14~B0 time value is represented in binary, and when the time 
value is negative, B14~B0 is represented with the 2's complement. The number of seconds that results from 
this operation is the result of summation of seconds from the three registers representing hours: minutes: 
seconds. 

 B15  B14 B0 B15B0 
S (sec)  －32768 sec〜32767 sec D the sec. value. 

S＋1 (min)  －32768 min〜32767 min D＋1     
S＋2  (hr)  －32768 hr〜32767 hr 

Ö 
B31 B30 B16 

 ↑ ↑ B31 is used to represent the positive or  
The B15 of each registers is used to represent the sign of each time value └ negative nature of the sec. value 

z Besides FUN61 or 62 instruction which treat hour: minute: second registers as an integral data, other 
instructions treat it as individual registers.  

z The example program at below converts the hour: minute: second data formed by R20~R22 into their 
equivalent value in seconds then stored in the 32-bit register formed by R50~R51. The results are shown 
below. 

 R20 0E11H ＝3601 sec 
S R21 FD2FH  ＝−721 min 
 R22 03F3H  ＝1011 hr 

ØX0＝  

R50 EE45H 

X0
:     R        20EN

61P.

S

D

SEC
D=0

:     R        50

 

D 
R51 0036H 

＝3599941 sec 

 
 

9-33 



Code conversion instructions 

FUN 62  
→HMS 

SECOND→HOUR：MINUTE：SECOND 
FUN 62  

→HMS 

62P.

D

EN S

HMS

:

:

OVR

D=0 Result as 0

Over range

Conversion control

 

S :Starting register of second to be converted 

D :Starting register storing result of conversion 
(hour : minute : second) 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

－117968399 
∣ 

117964799 
S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
D  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  

 

z When conversion control "EN" = 1 or "EN↑" (  instruction) has a transition from 0 to 1, will convert the 
second data from the S~S+1 32-bit register into the equivalent hour : minute : second time value and store it 
in the three successive registers D~D+2. All the data in this instruction is represented in binary (if there is a 
negative value it is represented using the 2's complement.) 

 B15 B0 B15 B0 
S    D  (sec)  －59 sec〜59 sec 
S＋1   

Second 
 Ö 

D＋1 (min)  －59 min〜59 min 
 B31 B16  D＋2  (hr)  －32768 hr〜32767 hr 
↑ 

The bit B31 of the second 
register is used as the sign  
bit of the second value. 

 ↑ 
The bits B15 of each register are used as 
the sign bit of the hour : minute : second 
value. 

z As shown in the diagram above, after convert to hour : minute : second value, the minute : second value can 
only be in the range of -59 to 59, and the hour number can be in the range of -32768 to 32767 hours. 
Because of this, the maximum limit of D is -32768 hours, -59 minutes, -59 seconds to 32767 hours, 59 
minutes, 59 seconds, the corresponding second value of S which is in the range of -117968399 to 
117964799 seconds. If the S value exceeds this range, this instruction cannot be carried out, and will set the 
over range flag "OVR" to 1. If S = 0 then result is 0 flag "D = 0" will be set to 1. 

z The program in the diagram below is an example of this instruction. Please note that the content of the 
registers are denoted by hexadecimal, and on the right is its equivalent value in decimal notation. 

R0 5D17H 
R1 0060H 

 6315287 sec 

ØX0＝  

R10 002FH 47 sec 
R11 000EH 14 min 

X0 62P.
:     R         0

:     R       10
EN S

D

HMS

OVR

D=0

 
 R12 06DAH 1754 hr 

 
 

9-34 



 Code conversion instructions 

FUN 63  
→HEX 

Conversion of ASCII code to hexadecimal value 
FUN 63  

→HEX 

63P.

N
D

EN S
:
:

HEX

: ERRConversion control

 

S : Starting source register. 

N : Number of ASCII codes to be converted to 
hexadecimal values. 

D : The starting register that stores the result 
(hexadecimal value). 

S, N, D, can associate with V, Z to do the indirect 
addressing application. 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

16-bit 
+number 

V 
、 
Z 

S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  ○ 
N ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 1〜511 ○ 
D  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  ○ 

 

z When conversion control “EN” =1 or “EN↑” (  instruction) changes from 0→1, it will convert the N 
successive hexadecimal ASCII character(‘0’~’9’,’A’~’F’) convey by 16 bit registers (Low Byte is effective) into 
hexadecimal value, and store the result into the register starting with D. Every 4 ASCII code is stored in one 
register. The nibbles of register, which does not involve in the conversion of ASCII code will remain 
unchanged.  

z The conversion will not be performed when N is 0 or greater than 511. 

z When there is ASCII error (neither 30H〜39H nor 41H〜46H), the output “ERR” is ON. 

z The main purpose of this instruction is to convert the hexadecimal ASCII character (‘0’~’9’,’A’~’F’), which is 
received by communication port1 or communication port2 from the external ASCII peripherals, to the 
hexadecimal values that the CPU can process directly. 

 

9-35 



Code conversion instructions 

FUN 63  
→HEX 

Conversion of ASCII code to hexadecimal value 
FUN 63  

→HEX 

〈Example 1〉When M1 from OFF→ON, ASCII code converted to hexadecimal value. 

M1 63P.

EN

D
N

S

: R100

: R0
: 1

HEX

 

˙Converts the ASCII code of R0 into hexadecimal 
value and store to nibble0 (nibble1~nibble3 remain 
unchanged) of R100 

 Originally R100＝0000H 
 R0＝0039H（9）Î  R100＝0009H 

〈Example 2〉When M1 is ON, ASCII code converted to hexadecimal value. 

SEN : R0

: R100D
N : 2

M1 63. HEX

 

˙ Converts the ASCII code of R0 and R1 into 
hexadecimal value and store to low byte (high byte 
remain unchanged) of R100 

 R0＝0039H（9） Originally R100＝0000H 
 R1＝0041H（A）Î  R100＝009AH 

〈Example 3〉When M1 is ON, ASCII code converted to hexadecimal value. 

M1

: 3

63.
: R0

: R100

EN S

D
N

HEX

 

 
˙ Converts the ASCII code of R0 and R1 into 

hexadecimal value and store result into R100 
(nibble 3 remain unchanged) 

 R0＝0039H （9） Originally R100＝0000H 
 R1＝0041H （A） 
 R2＝0045H （E）Î R100＝09AEH 

〈Example 4〉When M1 is ON, ASCII code converted to hexadecimal value. 

M1 HEX

: R100

: R0
63.

EN
: 6N

D

S

 

˙Converts the ASCII code of R0~R5 into hexadecimal 
value and store it to R100~R101 

 R0＝0031H（1） Originally R100＝0000H 
 R1＝0032H（2） R101＝0000H 
 R2＝0033H（3） 
 R3＝0034H（4） 
 R4＝0035H（5）Î  R100＝3456H 
 R5＝0036H（6） R101＝0012H 

9-36 



 Code conversion instructions 

FUN 64  
→ASCII 

Conversion of hexadecimal value to ASCII code 
FUN 64  

→ASCII 

D

64P.   ASCII

EN S :

N :
:

Conversion control

 

S : Starting source register 

N : Number of hexadecimal digit to be converted to 
ASCII code. 

D : The starting register storing result. 
S, N, D, can associate with V, Z to do the indirect 
addressing application. 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

16-bit 
+ number 

V 
、 
Z 

S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  ○ 
N ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 1~511 ○ 
D  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  ○ 

 

z When conversion control “EN” =1 or “EN↑” (  instruction) changes from 0→1, will convert the N 
successive nibbles of hexadecimal value in registers start from S into ASCII code, and store the result to 
low byte (high byte remain unchanged) of the registers which start from D. 

z The conversion will not be performed when the value of N is 0 or greater than 511. 

z The main purpose of this instruction is to convert the numerical value data, which PLC has processed, to 
ASCII code and transmit to ASCII peripherals by communication port1 or communication port 2. 

 

9-37 



Code conversion instructions 

FUN 64  
→ASCII 

Conversion of hexadecimal value to ASCII code 
FUN 64  

→ASCII 

〈Example 1〉When M1 changes from OFF→ON, it converts hexadecimal value to ASCII code. 

M1
SEN : R0

: R100
: 1N

D

64P.   ASCII

 

˙Converts the Nibble 0 of R0 to ASCII code and stores 
it into R100 (High byte does not change). 

 R0＝0009H Î R100＝0039H（9） 

〈Example 2〉When M1 is ON, it converts hexadecimal value to ASCII code. 

M1

: 2
: R100

: R0EN

N
D

S

64.   ASCII

 

 
˙Converts the NB0〜NB1 of R0 to ASCII code and 

stores it into R100 〜 R101 (high bytes remain 
unchanged). 

 R0＝009AH Î R100＝0039H（9） 
 R101＝0041H（A） 

〈Example 3〉When M1 is ON, it converts hexadecimal value to ASCII code. 

M1

N : 3

D : R100

SEN : R0
64.   ASCII

 

 
˙Converts the NB0〜NB2 of R0 to ASCII code and 

stores it into R100〜R102 

 R0＝0123H Î  R100＝0031H（1） 
 R101＝0032H（2） 
 R102＝0033H（3） 

〈Example 4〉When M1 is ON, it converts hexadecimal value to ASCII code. 

M1

D : R100
: 6
: R0EN S

N

64.   ASCII

 

˙Converts the NB0〜NB5 of R0〜R1 to ASCII code 
and stores it into R100〜R105 

 R0＝3456H Î  R100＝0031H（1） 
 R1＝0012H R101＝0032H（2） 

 R102＝0033H（3） 
 R103＝0034H（4） 
 R104＝0035H（5） 
 R105＝0036H（6） 

 

9-38 



Flow control instructions 

END PROGRAM END END 

EN ENDEnd control

 
No operand  

z When end control "EN" = 1, this instruction is activated. Upon executing the END instruction and "EN" = 1, the 
program flow will immediately returns to the starting point (0000M) to restart the next scan – i.e. all the 
programs after the END instruction will not be executed. When "EN" = 0, this instruction is ignored, and 
programs after the END instruction will continue to be executed as the END instruction is not exist.  

z This instruction may be placed more than one point within a program, and its input (end control "EN") controls 
the end point of program execution. It is especially useful for debugging and for testing. 

z It’s not necessary to put any END instructions in the main program, CPU will automatic restart to start point 
when reach the end of main program. 

 

Program 1

.

.

X0=X1=0

X0=0
X1=1

X0=1

Program
 execution

X1

X0

EN

EN

END

END

0 0 0 0 M

Program 2

Program 3 Program 3

Program 2

Program 1

ORG               X0    
END

ORG               X1    
END

 

 

9-39 



Flow control instructions 

FUN 65 
LBL 

LABEL 
FUN 65 

LBL 

LBL

65

S

 

S : Alphanumeric, 1~6 characters 

z This instruction is used to make a tag on certain address within a program, to provide a target address for 
execution of JUMP, CALL instruction and interrupt service. It also can be used for document purpose to 
improve the readability and interpretability of the program. 

z This instruction serves only as the program address marking to provide the control of procedure flow or for 
remark. The instruction itself will not perform any actions; whether the program contains this instruction or not, 
the result of program execution will not be influenced by this instruction. 

z The label name can be formed by any 1〜6 alphanumeric characters and can’t be duplicate in the same 
program. The following label names are reserved for interrupt function usage.  These “reserved words”, can’t 
be used for normal program labels. 

Reserved words Description 

X0+I〜X15+I（INT0〜INT15） 

X0−I〜X15−I（INT0−〜INT15−） 
labels for external input (X0〜X15) interrupt 
service routine. 

HSC0I〜HSC7I labels for high speed counter HSC0〜HSC7 
interrupt service routine. 

1MSI（1MS）、2MSI（2MS），3MSI（3MS）， 
4MSI（4MS），5MSI（5MS），10MSI（10MS）， 
50MSI（50MS），100MSI（100MS） 

Labels for 8 kinds of internal timer interrupt 
service routine. 

HSTAI（ATMRI） Label for High speed fixed timer interrupt 
service routine. 

PSO0I〜PSO3I Labels for the pulse output command 
finished interrupt service routine. 

Only the interrupt service routine can use the label names listed on above table, if mistaken on using the 
reserved label on the normal subroutine can cause the CPU fail or unpredictable operation. 

The label of following diagram illustration served only as program remarks (it is not treated as a label for call 
or jump target).  For the application of labeling in jump control, please refer to JMP instruction for 
explanation.  As to the labeling serves as subroutine names, please refer to CALL instruction for details. 

LBL

65

PGM1

Program 1

PGM2LBL

65

Program 2

 

 

9-40 



Flow control instructions 

FUN 66  
JMP 

JUMP 
FUN 66  

JMP 

EN

66P

JMP LBLJump control

 

LBL : The program label to be jumped 

z When jump control “EN”=1 or “EN↑” (  instruction) changes from 0→1, PLC will jump to the location behind 
the marked label and continuous to execute the program. 

z This instruction is especially suit for the applications where some part of the program will be executed only 
under certain condition. This can shorter the scan time while not executes the whole program. 

z This instruction allows jump backward (i.e. the address of LBL is comes before the address of JMP 
instruction). However, care should be taken if the jump action cause the scan time exceed the limit set by the 
watchdog timer, the WDT interrupt will be occurred and stop executing.  

z The jump instruction allows only for jumping among main program or jumping among subroutine area, it can’t 
jump across main/subroutine area. 

EN JMP PATHB

PATHBLBL

65

66X0

Program A

Program B

 

˙In the left diagram, when X0=1, the program will jump  
directly to the LBL position named PATHB and 
continuing to execute program B. Therefore it will skip 
the program A and none of the instructions of 
program A will be executed.  The status of registers 
and the coils associated with program A will keep 
unchanged (as if there is no program section A). 

 

 

9-41 



Flow control instructions 

FUN 67  
CALL 

CALL 
FUN 67  

CALL 

EN CALL

67P

LBLCall control
 

LBL : The subroutine label name to be called. 

z All the subroutines must end with one  “return from 
subroutine instruction RTS” instruction; otherwise it 
will cause executing error or CPU shut down.   
Nevertheless, an RTS instruction can be shared by 
subroutines (so called as multiple entering 
subroutines; even though the entry points are 
different, they have a same returning path) as 
illustrated in the right diagram subroutine SUB1〜3.  

z When main program called a subroutine, the 
subroutine also can call the other subroutines (so 
called the nested subroutines) for up to 5 levels at 
the most (include the interrupt routine). 

CALL  SUB1

1X

LBL     SUB1

CALL  SUB2

RTS

2X

RTS

LBL     SUB2

CALL  SUB3

3X

RTS

LBL     SUB3

CALL  SUB4

4X

LBL     SUB4

RTS

5X

Main program area Subroutine area  

SUB3

+ 66.

LBL

LBL

65

65

68

SUB3

SUB2

SUB1

.

.

.

JMP

SUB2

SUB3

RTS

LBL

65. SUB1

Program 1

Program 2

Program 3

 

z When call control “EN”=1 or “EN↑” (  instruction) changes from 0→1, PLC will call (perform) the 
subroutine bear the same label name as the one being called. When execute the subroutine, the program 
will execute continuous as normal program does but when the program encounter the RTS instruction then 
the flow of the program will return back to the address immediately after the CALL instruction. 

 

z Interrupt service programs （HSC0I〜HSC7I、PSO0I〜PSO3I、X0+I〜X15+I／INT0〜INT15、X0−I〜X15−I
／INT0−〜INT15−、HSTAI／ATMRI、1MSI／1MS、2MSI／2MS、3MSI／3MS、4MSI／4MS、5MSI／5MS、
10MSI／10MS、50MSI／50MS、100MSI／100MS） are also a kind of subroutine.  It is also placed in sub 
program area.  However, the calling of interrupt service program is triggered off by the signaling of 
hardware to make the CPU perform the corresponding interrupt service program (which we called as the 
calling of the interrupt service program). The interrupt service program can also call subroutine or 
interrupted by other interrupts with higher priority.  Since it is also a subroutine (which occupied one level), 
it can only call or interrupted by 4 levels of subroutine or interrupt service program. Please refer to RTI 
instruction for explanation. 

9-42 



Flow control instructions 

FUN 68 
RTS 

RETURN FROM SUBROUTINE 
FUN 68 

RTS 

68

RTS

 

z This instruction is used to represent the end of a subroutine. Therefore it can only appear within the 
subroutine area. Its input side has no control signal, so there is no way to serially connect any contacts. 
This instruction is self sustain, and is directly connected to the power line. 

z When PLC encounter this instruction, it means that the execution of a subroutine is finished. Therefore it will 
return to the address immediately after the CALL instruction, which were previously executed and will 
continue to execute the program. 

z If this instruction encounters any of the three flow control instructions MC, SKP, or JMP, then this instruction 
may not be executed (it will be regarded as not exist). If the above instructions are used in the subroutine 
and causing the subroutine not to execute the RTS instruction, then PLC will halt the operation and set the 
M1933( flow error flag) to 1. Therefore, no matter what the flow is going, it must always ensure that any 
subroutine must be able to execute a matched RTS instruction. 

z For the usage of the RTS instruction please refer to instructions for the CALL instruction. 
 

 

 

9-43 



Flow control instructions 

FUN 69 
RTI 

RETURN FROM INTERRUPT 
FUN 69 

RTI 

69

RTI

 

z The function of this instruction is similar to RTS.  Nevertheless, RTS is used to end the execution of sub 
program, and RTI is used to end the execution of interrupt service program. Please refer to the explanation 
of RTS instruction. 

z A RTI instruction can be shared by more than one interrupt service program. The usage is the same as the 
sharing of an RTS by many subroutines. Please refer to the explanation of CALL instruction. 

z The difference between interrupts and call is that the sub program name (LBL) of a call is defined by user, 
and the label name and its call instruction are included in the main program or other sub program.  
Therefore, when PLC performs the CALL instruction and the input “EN”=1 or “EN↑” (  instruction) 
changes from 0→1, the PLC will call (execute) this sub program.  For the execution of interrupt service 
program, it is directly used with hardware signals to interrupt CPU to pause the other less important works, 
and then to perform the interrupt service program corresponding to the hardware signal (we call it the 
calling of interrupt service program).  In comparing to the call instruction that need to be scanned to 
execute, the interrupt is a more real time in response to the event of the outside world. In addition, the 
interrupt service program cannot be called by label name; therefore we preserve the special “reserved 
words” label name to correspond to the various interrupts offered by PLC (check FUN65 explanation for 
details). For example, the reserved word X0+I is assigned to the interrupt occurred at input point X0; as 
long as the sub program contains the label of X0+I, when input point X0 interrupt is occurred (X0: ), the 
PLC will pause the other lower priority program and jump to the subroutine address which labeled as X0+I 
to execute the program immediately. 

z If there is a interrupt occurred while CPU is handling the higher priority (such as hardware high speed 
counter interrupt) or same priority interrupt program (please refer to Chapter 10 for priority levels), the PLC 
will not execute the interrupt program for this interrupt until all the higher priority programs were finished.  

z If the RTI instruction cannot be reached and performed in the interrupt service routine, may cause a serious 
CPU shut down. Consequently, no matter how you control the flow of program, it must be assured that the 
RTI instruction will be executed in any interrupt service program. 

z For the detailed explanation and example for the usage of interrupts, please refer to Chapter 10 for 
explanation.  

 

 

9-44 



Flow control instructions 

FUN 70 
FOR 

FOR 
FUN 70 

FOR 

NFOR

70

 

N : Number of times of loop execution  

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

1 
∣ 

16383 
N ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

 

z This instruction has no input control, is connected directly to the power line, and cannot be in series with 
any conditions. 

z The programs within the FOR and NEXT instructions form a program loop (the start of the loop program is 
the next instruction after FOR, and the last is the instruction before NEXT). When PLC executes the FOR 
instruction, it first records the N value after that instruction (loop execution number), then for N times 
successively execution from start to last of the programs in the loop. Then it jumps out of the loop, and 
continues executes the instruction immediately after the NEXT instruction. 

z The loop can have a nested structure, i.e. the loop includes other loops, like an onion. 1 loop is called a 
level, and there can be a maximum of 5 levels. The FOR and NEXT instructions must be used in pairs. The 
first FOR instruction and the last NEXT instruction are the outermost (first) level of a nested loop. The 
second FOR instruction and the second last NEXT instruction are the second level, the last FOR instruction 
and the first NEXT instruction form the loop's innermost level. 

 

71

71

71

70

70

70

.

.

.

.

.
1 32

NEXT

NEXT

NEXT

FOR

FOR

FOR

3

4

2

 

˙In the example in the diagram at left, loop  c  will be 
executed 4 × 3 ×2 = 24 times, loop  d  will be 
executed 3 × 2 = 6 times, and loop  e  will be 
executed 2 times. 

˙If there is a FOR instruction and no corresponding NEXT 
instruction, or the FOR and NEXT instructions in the 
nested loop have not been used in pairs, or the sequence 
of FOR and NEXT has been misplaced, then a syntax 
error will be generated and this program may not be 
executed. 

˙In the loop, the JMP instruction may be used to jump out 
of the loop. However, care must be taken that once the 
loop has been entered (and executed to the FOR 
instruction), no matter how the program flow jumps, it 
must be able to reach the NEXT instruction before 
reaching the END instruction or the bottom of the 
program. Otherwise FB-PLC will halt the operation and 
show an error message. 

˙The effective range of N is 1~16383 times. Beyond this 
range FB-PLC will treat it as 1. Care should be taken , if 
the amount of N is too large and the loop program is too 
big, a WDT may occur. 

 
 

 

9-45 



Flow control instructions 

FUN 71 
NEXT 

LOOP END 
FUN 71 
NEXT 

NEXT

71

 

z This instruction and the FOR instruction together form a program loop. The instruction itself has no input 
control, is connected directly to the power line, and cannot be in series with any conditions. 

z When PLC has not yet entered the loop (has not yet executed to the FOR instruction, or has executed but 
then jumped out), but the NEXT instruction is reached, then PLC will not take any action, just as if this 
instruction did not exist. 

z For the usage of this instruction please refer to the explanations for the FOR instruction on the preceding 
page. 

 

9-46 



Temperature control instructions 1 

FUN 72 
TP4 

The Convenient instruction for temperature measuring module 
(Brief description of function) 

FUN 72 
TP4 

:Pl
Sm :

72.TP4
EN Tp : ERR

AR :
TR :

Ym :

ALM

WR :

Execution control
Sensor line breaking
Parameter error

 

 

Tp : Type of Temperature sensor, it can be J or 
K Type thermo-coupler or PT-100 RTD. 

Pl : Polarity and the voltage range setting for 
temperature module. 

Sm : Starting temperature point measured by 
the temperature module.  

Ym : Starting output for preserved for controlled 
temperature measurement module.  

AR : Analogue input register preserved for  
controlled temperature module.  

TR : Starting register for temperature readings 
storing. 

WR : Starting working register for this instruction 
instance.  

Brief desc

Ope-
rand

T

S
Y
A
T
W

 

z T
W
E

z T
m
fu
F

 

 

Y HR IR ROR DR K Range 

 
 

Y0 
∣ 

Y255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

 
 
 

p      0〜2 
Pl      0〜3 
m      n×4，n=0〜7 
m ○      
R   ○    
R  ○  ○ ○*  
R  ○  ○ ○*  
ription of instruction function   

his is a dedicate instruction for the FB-J(K)4 or FB-RTD4 multiplexing temperature measurement module.  
ith this instruction, the user can acquire temperature readings by simply fill a table formed by registers. 
ach instance of instruction can handle one FB-J(K)4 or FB-RTD4 module. 

his instruction must incorporate with FB-J(K)4 or FB-RTD4 multiplexing temperature measurement 
odule in its usage. Hereby it introduced briefly about the function of this instruction only. For details of the 
nction, explanation, usages and examples, please refer to Chapter 20 “Temperature measurement of 
B-PLC and PID Control”. 

9-47 



Temperature control instructions 1 

FUN 73 
TSTC 

Convenient instruction for temperature measuring of temperature module  
+ PID temperature control  

FUN 73 
TSTC 

:Sh
Zh :

73.TSTC

EN

Yh :

ERR

Os :
PR :

Sv :

AO0

WR
OR
DR
IR

:
:

:
:

H/C

AO1

AR
TR

:
:

Sm
Ym

:
:

Pl

Tp

:

:Execution control

Heating/Cooling

Parameter error

sensor line breaking
Temperature

Temperature
control warning

 

 

Tp : Type of temperature sensor, it can be J 
or K Type thermo-coupler or PT-100 
RTD. 

Pl : Polarity and the voltage range setting for 
temperature module. 

Sm: Starting temperature point measured by 
controlled temperature module.  

Ym: Starting output point preserved for 
controlled temperature module.  

AR : Analogue input register preserve for 
controlled temperature module.  

TR : Starting register for temperature 
readings storing. 

Yh : Starting point of PWM temperature 
control output point. 

Sh : starting temperature point for processing 
by this instruction instance. 

Zh : Number of temperature points 
processed by this instruction instance. 

Sv : Starting register for temperature setting 
value storing. 

Os : Starting register for temperature 
deviation value storing.  

PR : Starting register for gain setting value 
storing.  

IR : Starting register for integral time 
constant setting value storing. 

DR: Starting register for differential time 
constant setting value storing.  

OR: Starting register for temperature control 
value output storing.  

WR: Starting working register for this 
instruction instance. 

Description  

Y HR IR DR ROR K Range 

Ope- 
rand 

Y0 
∣ 

Y255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

D0 
∣ 

D3071 

R5000 
∣ 

R8071 
 

Tp      0〜2 
Pl      0〜3 

Sm      n×4  n = 0〜7 
Ym ○      
AR   ○    
TR  ○  ○ ○*  
Yh ○      
Sh      0〜23 
Zh      1〜24 
Sv  ○  ○ ○*  
Os  ○  ○ ○*  
PR  ○  ○ ○*  
IR  ○  ○ ○*  
DR  ○  ○ ○*  
OR  ○  ○ ○*  
WR  ○  ○ ○*  

z This instruction is used for the measuring for FB-J(K)4 or FB-RTD4 temperature measuring module and 
PID temperature control.  With this instruction, the user may easily reach multi-points PID loop 
temperature control by table filling method.  

z  This instruction must incorporate with FB-J(K)4 or FB-RTD4 multiplexing temperature measuring module 
in its usage.  Hereby it introduced briefly about the function of this instruction only.  For details of the 
function, explanation, usages, and examples, please refer to Chapter 20 “Temperature measuring of 
FB-PLC and PID Control”. 

9-48 



I/O instructions 

FUN 74  
IMDIO 

IMMIDIATE I/O  
FUN 74  

IMDIO 

74P.IMDIO

N :

EN D :Reflesh control

 

D : Starting number of I/O points to be refreshed 
N : Number of I/O points to be refreshed 

 
X Y K Range 

Ope- 
rand 

Xn of  
Main 
Unit. 

Yn of  
Main 
Unit. 

1 
∣ 
24 

D ○ ○  
N   ○ 

 

● For normal PLC scan cycle, the CPU gets the entire input signals before the program is executed, and then 
perform the executing of program based on the fresh input signals. After finished the program execution the 
CPU will update all the output signals according to the result of program execution. Only after the complete 
scan has been finished will all the output results be transferred all at once to the output. Thus for the input 
event to output responses, there will be a delay of at least 1 scan time (maximum of 2 scan time). With this 
instruction, the input signals or output signals specified by this instruction can be immediately refresh to get 
the faster input to output response without the limitation imposed by the scan method.  

● When refresh control "EN" = 1 or "EN↑" (  instruction) has a transition from 1 to 0, then the status of N 
input points or output points (D~D+N-1) will be refreshed. 

● The I/O points for FB-PLC's immediate I/O are only limited to I/O points on the main unit. The table below 
shows permissible I/O numbers for 20, 28, and 40 point main units: 

Main-unit type 

Permissible numbers 
20 points 28 points 40 points 

Input signals X0〜X11 X0〜X15 X0〜X23 

Output signals Y0〜Y7 Y0〜Y11 Y0〜Y15 

● If the intended refresh I/O signals of this instruction is beyond the range of I/O points specified on above 
table then PLC will be unable to operate and the M1931 error flag will be set to 1. ( for example, if in a 
program, D=X7, N=10, which means X7 to X16 are to be immediately retrieved. Supposing the main unit is 
FB-28MB, then its biggest input point is X15, and clearly X16 has already exceeded the main unit's input 
point number so under such case M1931 error flag will be set to 1). 

● With this instruction, PLC can immediately refresh input/output signals. However, the delay of the hardware 
or the software filter impose on the I/O signals still exist. Please pay attention on this.  

 

9-49 



I/O instructions 

FUN 75  
FILT 

FILTER ADJUST 
FUN 75  

FILT 

EN FILT

75P

NInput control
 

N : Filter time  0〜30（mS） 

● This instruction is especially use for  the 16 input points X0〜X15 of main unit for the software integral 
(filter) time adjustment.  When input control “EN”=1 or “EN↑” (  instruction) changes from 0→1, will 
sets the input filter time to be NmS for the 16 points from X0〜X15. 

● As a matter of fact, the 16 input points of X0〜X15 have all been pre-processed by Dardware Digital Filter 
to enhance the noise immunity capability. The highest input frequency of X0〜X15 that the hardware digital 
filter can be configured is range from 4KHZ〜512KHZ. The best setting can be achieved dynamically 
according to the field condition.  

● Except the 16 input point of X0〜X15, all the other input points had been added with roughly 4mS of RC 
filter circuit to enhance the noise immunity, thus these signal are not suitable for high speed operation. If 
use this function to set the filter time to zero (default 4ms) and configure the Hardware Digital Filter to Max. 
frequency (default) then X0~X15 inputs can be used for high speed application.  

 

 

 

9-50 



I/O instructions 

FUN 76  
TKEY 

DECIMAL- KEY INPUT 
FUN 76  

TKEY 

76D.TKEY

:KL

IN

D :

: KPR Key−in actionInput control EN

 

IN : Key input point 
D : register storing key-in numerals 
KL: starting coil to reflect the input status 
D may combine with V, Z to serve indirect 
address application 

 
X Y M S WY WM WS TMR CTR HR OR SR ROR DR XR Range 

Ope- 
rand 

X0 
∣ 

X240 

Y0 
∣ 

Y240 

M0 
∣ 

M1896 

S0 
∣ 

S984 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

V 
、 
Z 

IN ○               
D     ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○ 
KL  ○ ○ ○            

 

z This instruction has designated 10 input points IN~IN+9 (IN0~IN9) to one decimal number entry (IN->0, 
IN+1->1…). According to the key-in sequence (ON) of these input points, it is possible to enter 4 or 8 
decimal numbers into the registers specified by D.  

z When input control "EN" = 1, this instruction will monitor the 
10 input points starting from IN and put the corresponding 
number into D register while the key were depressed. It will 
wait until the input point has released, then monitor the next 
"ON" input point, and shift in the new number into D register 
(high digit is older than low digit ) . For the 16-bit operand, D 
register can store up to 4 digits, and for the 32-bit operand 8 
digits may be stored. When the key numbers full fill the D 
register, new key-in number will kick out the oldest key 
number of the D register. The key-in status of the 10 input 
points starting from IN will be recorded on the 10 
corresponding coil starting from KL. These coils will set to 1 
while the corresponding key is depressed and remain 
unchanged even if the corresponding key is released. Until 
other key is depressed then it will return to zero. As long as 
any input point is depressed (ON), then the key-in flag KPR 
will set to 1. Only one of IN0~IN9 key can be depressed at 
the same time. If more than one is pressed, then the first 
one is the only one taken. Below is a schematic diagram of 
the function with 16-bit operand. 

BIN(0~9999)D

Forced out

Key-in

BCD Code

1000S 100S 10S 1S

 

z When input control "EN" = 0, this instruction will not be executed. KPR output and KL coil status will be 0. 
However, the numerical values of D register will remain unchanged.  

KPR

:     M        0
:     R         0

:     X         0IN

KL
D

76.TKEY Y0X20
EN

 

˙The instruction at left represents the input point X0 with 
the number "0", X1 is represented by 1, ... , M0 records 
the action of X0, M1 records the action of X1 ... , and the 
input numerical values are stored in the R0 register. 

 

 

9-51 



I/O instructions 

FUN 76  
TKEY 

DECIMAL- KEY INPUT 
FUN 76  

TKEY 

The following diagram is the input wiring schematic for this example: 

 

X1C X0 X2 X3 X4 X6X5 X7 X8 X9

FBE-PLC  input side

 

z If the X0~X3 key-in sequence follow the cdefghi sequence in the following diagram. At step c 
and i the X20 is 0, so there was no key generated, only steps defgh are effective. Because the 
register can only hold 4 key numbers, Of these 5 steps the first key was kick out. The key strokes 3302 of 
the steps efgh are entered in the R0 register. 

R0

X20

Y0

M3

M1

M2

M0

X3

X2

X0

X1

0 0 0 0 0 0 1 30 0 0 1 0 1 3 3 1 3 3 0 3 3 0 2

1

3

2

4

5

6

7

2 3 4 5 6

9-52 



I/O instructions 

FUN 77  
HKEY 

HEX-KEY INPUT  
FUN 77  

HKEY 

EN

:D

KL:

IN

OT:
:

77D.HKEY

FKP

NKPExecution control Number key press

Function key press

 

IN : Key scan input point number 
OT: Starting Multiplex scan output point 

(4 points) 
D : Register storing  

"key-in numbers" 
KL : Starting relay for key status 
D may combine with V, Z to serve indirect 
address application 

 
X Y M S WY WM WS TMR CTR HR OR SR ROR DR XR Range 

Ope- 
rand 

X0 
∣ 

X240 

Y0 
∣ 

Y240 

M0 
∣ 

M1896 

S0 
∣ 

S984 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

V 
、 
Z 

IN ○               
OT  ○              
D     ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○ 
KL  ○ ○ ○            

 

z The numeric (0~9) key function of this instruction is similar as for the TKEY instruction. The hardware 
connection for TKEY and HKEY is different. For TKEY instruction each key have one input point to connect, 
while HKEY use 4 input points and 4 output points to form a 4x4 multiplex 16 key input. 4 ×4 means that 
there can be 16 input keys, so in addition to the 10 numeric keys, the other 6 keys can be used as function 
keys (just like the usual discrete input). The actions of the numeric keys and the function keys are 
independent and have no effect on each other. 

z When execution control "EN" = 1, this instruction will scan the numeric keys and function keys in the matrix 
formed by the 4 input points starting from IN and the 4 output points starting from OT. For the function of the 
numeric keys and "NKP" output please refer to the TKEY instruction. The function keys maintain the key-in 
status of the A~F keys in the last 6 relays specified by KL (the first 10 store the key-in status of the numeric 
keys). If any one of the A~F keys is depressed, FKP (FO1) will set to 1. The OT output points for this 
instruction must be transistor outputs. 

z The biggest number for a 16-bit operand is 4 digits (9999), and for 32-bit operand is 8 digits (99999999). 
However, there are only 6 function keys (A~F), no matter whether it is a 16-bit or 32-bit operand. 

FKP

NKPIN :    X         0

:    M        0

:    R         0

:    Y         0

:KL

OT

D :

:

77D.HKEYX10
EN

 

˙The instruction in the diagram above uses 
X0~X3 and Y0~Y3 to form a multiplex key 
input. It can input numeric values of 8 digits 
and stores the results in R1R0. The input 
status of the function keys is stored in 
M10(A)~M15(F). 

 

Y2

X2

98

Y0C Y1

X0C X1

4

0

5

1

C D

BA

Y3

X3

2

6 7

3

E F
Function 
keys

Numeric 
keys

FBE−PLC (transistor output)

 

9-53 



I/O instructions 

FUN 78  
DSW 

DIGITAL SWITCH INPUT 
FUN 78  

DSW 

D

IN

78D.DSW

OT

EN

:

:

:
ERR

DNInput control Readout completed

Reading error

 

IN : Switch input points  

OT : Multiplex scan output points (4 points) 
D : register storing readout value 
D may combine with V, Z to serve indirect 
address application D 

 
X Y WY WM WS TMR CTR HR OR SR ROR DR XR Range 

Ope- 
rand 

X0 
∣ 

X240 

Y0 
∣ 

Y240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

V 
、 
Z 

IN ○             
OT  ○            
D   ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○ 

 
z When input control "EN" = 1, this instruction will readout one digit data from the 4 input points starting from 

IN (IN0~IN3). It takes 4 scans to read out a group of 4-digit BCD values (0000~9999) and store them into D 
register. With a 32-bit operand, each scan can get 2 digits of data by reading the additional digit from 
IN4-IN7 and store it in the D+1 register. Each bit of OT0~OT3 will sequentially set to 1 and get the digit data 
respectively into 100(ones), 101(tens), 102(hundreds), and 103(thousands). As long as EN is 1, PLC will 
scan and read out in continuous cycles. When each complete cycle is finished (i.e. the 4 digit readout of 
100~103 is completed), the readout completed flag "DN" is set to 1. However, it is only kept for one scan. If 
any digital readout value is not within the range of 0~9 (BCD), then reading error "ERR" will be set to 1 and 
the value of that group of digits will be set to 0000. 

z This instruction can only be used once in a program and its output points must be transistor outputs. 

 

X10

:    R        0
:    Y        0

:    X        0
78.DSW

D

EN IN

OT
ERR

DN

 

˙In this example, when X10 is 1, then the numeric value of the 
thumb wheel switch (5678 in this example) will be read out 
and stored into the R0 register. 

˙The bits (8,4,2,1) with same digit should be connect together 
and series with a diode (as shown in diagram below). 

˙With 32-bit operand a set of similar thumb wheel switch may 
be added to X4~X7 (Y0~Y3 are shared with another group). 

2

4

first group input

(5) 10103

8

21

X0

Y0C

C

Y1

X1

14 2 8

(8)(7)(6) 1010 01

X7

(only effective in 32-bit operand)

84

Y3Y2

X2 X3 X4

2 1 8 4

FBE-PLC

second group input

X5 X6

82 1 4 2 1

BCD
thumb wheel
switch

9-54 



I/O instructions 

FUN 79  
7SGDL 

7-SEGMENT OUTPUT WITH LATCH 
FUN 79  

7SGDL 

79D.7SGDL

EN

OT
N

S
:
:

: DNExecution control Output completed

 

S : Register storing the data (BCD) to be 
displayed 

OT : Starting number of scanning output points 
N : Specify signal output and polarity of latch 

Signal 
D may combine with V, Z to serve indirect 
address application 

 
Y WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

Y0 
∣ 

Y240 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

16-bit 
number 

V 
、 
Z 

S   ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
OT ○               
N              0〜3  

 

z When input control "EN" = 1, the 4 nibbles of the S register, from digit 0 to digit 3, are sequentially sent out to 
the 4 output points, OT0~OT3. While output the digit data, the latch signal of that digit (OT4 corresponds to 
digit 0, OT5 corresponds to digit 1, etc...) at the same time is also sent out so that the digital value will be 
loaded and latched into the 7-segment display respectively. 

z When in D (32-bit) instruction, nibbles 0~3 from the S register, and nibbles 0~3 from the S+1 register are 
transferred separately to OT0~OT3 and OT8~OT11. Because they are transferred at the same time, they can 
use the same latch signal. 16-bit instructions do not use OT8~OT11. 

z As long as "EN" remains 1, PLC will execute the transfer cyclically. After each transfer of a complete group of 
numerical values (nibbles 0~3 or 0~7), the output completed flag "DN" will set to 1. However, it will only be kept 
for 1 scan. 

 

X0 79D.7SGDL
:     R         0

:     Y         0
:     2

EN

OT
N

S DN

 

z In this example, when X0=1, the 4 nibbles of R0 
will be transferred to the first group 7-segment 
display in the diagram below. The 4 nibbles of R1 
will be transferred to the second group 7-segment 
display. 

10
C

8421 101010
Y3Y1Y0 Y2 Y5Y4 Y6 Y7

8

2
1

4

310 210

COM

110 010

0

VCC

1 2 8421
Y11Y8 Y9 Y10

NPN

8
4

3

2
1

310 210

VCC

110 010

COM

first group second group

FBE−PLC  transistor output

9-55 



I/O instructions 

FUN 79  
7SGDL 

7-SEGMENT OUTPUT WITH LATCH 
FUN 79  

7SGDL 

z FACON PLC's transistor output has both a negative logic transistor output (NPN transistor - when the output 
status is ON, the terminal voltage of the transistor output is low), and a positive logic transistor output (PNP - 
when the output status is ON, the terminal voltage of the transistor output is high). Their structure is as follows: 

FBE-PLC negative logic output (NPN transistor)  FBE-PLC positive logic output (PNP transistor) 

0V

+24V

Yn

+24V

C

Yn

 

When Yn is 
"ON", this output  
voltage is low 

+24V

Yn

0V 0V

Yn

C

 

When Yn is "ON", 
Yn's terminal  
voltage is high 

z The data inputs (8,4,2,1) and latch signals of the 7-segment displays on the shelf for positive and negative logic 
are all available. For example, for numerical value "8", the positive logic input should be 1000, and the negative 
logic input 0111. Similarly, when the latch signal is 0, the positive logic latch permits the display numerical values 
to enter through the latch (i.e. be loaded). When the latch signal is 1, the numerical values in the latch are 
latched (maintained), and with negative logic they are not. The following diagram of a CD-4511 7-segment 
display IC is an example of a positive logic numerical value input with latch. 

(8)D

(2)B

(4)C

(1)A

LT(10 )n LE
BI

VCC

CD4511

g
f

c

e
d

a
b

RN
um

berical value input

Latch sing1

4 bit
latch
    

BCD to
7-segment

LED
Drive

 

z Because the PLC output and the 7-segment display input polarity can be positive and negative logic. Therefore, 
the polarities between output and input must be coordinated to get the correct result. This instruction uses N to 
specify the polarity relation between the PLC transistor output, and the 7-segment display. The table below 
shows all the possibility. 

Numerical value input (8~1) Latch signal (100-103) Value of N 

Same 0 
Same 

Different 1 

Same 2 
Different 

Different 3 

z In the diagram above, CD4511 is used as an example. If use NPN output, the data input polarity is different to 
PLC, and its latch input polarity is the same as PLC, so N value should chosen as 2. 

 

9-56 



I/O instructions 

FUN 80 
MUXI 

MULTIPLEX INPUT 
FUN 80 
MUXI 

80.MUXI

EN :
:

:

:N

D

OT

IN DNExecution control Execution completed

 

IN : Multiplex input point number 

OT : Multiplex output point number 
(must be transistor output point) 

N : Multiplex input lines (2~8) 

D : Register for storing results 

D may combine with V, Z to serve indirect 
address application 

 
X Y WY WM WS TMR CTR HR OR SR ROR DR K XR Range 

Ope- 
rand 

X0 
∣ 

X240 

Y0 
∣ 

Y240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

2 
∣ 
8 

V 
、 
Z 

IN ○              
OT  ○             
N             ○  
D   ○ ○ ○ ○ ○ ○ ○ ○* ○* ○  ○ 

 

z This instruction uses the multiplex method to read out N lines of input status from 8 consecutive input points 
(IN0~IN7) starting from the input point specified by IN. With this method we can obtain 8 ×N input status, but 
only need to use 8 input points and N output points. 

z The multiplex scanning method goes through N output points starting from the OT output point. Each scan one 
of the N bits will set to 1 and the corresponding line will be selected. OT0 responsible for first line, while OT1 
responsible for second line, etc. Until it read all the N lines the 8 ×N status that has been read out is then 
stored into the register starting at D, and the execution completed flag "DN" is set as 1 (but is only kept for one 
scanning period). 

z With every scan, this instruction retrieves a line for 8 input status, so N lines require N scan cycles before they 
can be completed. 

 

:    X        24
:    Y        16

:    WM       0

EN IN

:    4

:D

N

OT
:

:

X0 80.MUXI
DN

 

z This example retrieves 4 lines × 8 points of 
input, 32 point status in all. They are stored into 
the 32-bit register of DWM0 (M0~M31). 

9-57 

Y23

X31

M0

M8

M16

M24

X24C

C Y16

X30X29X28X27X26X25

Y20Y17 Y18 Y19 Y21 Y22

M1

M9

M17

M25

M2

M10

M3

M11

M18

M26

M19

M27

M5

M13

M21

M29

M12

M4

M20

M28

M6

M14

M22

M30

M7

M15

M23

M31

FBE−PLC  NPN  transistor output

First line

Second line

Third line

Fourth line



I/O instructions 

FUN 81  
PLSO 

PULSE OUTPUT 
FUN 81  

PLSO 

OUT
Fr :

EN

U/D

PAU

:

:

:

:

UY

HO

DY

PC

ERR

DN

81D.PLSO

or CK
or DR

or DIR

:MD

Up/Down direction

Pause control

Output control Output go

Output completed

Error

 

MD : Output mode selection 
Fr : Pulse frequency 
PC : Output pulse count  
UY : Up pulse output point (MD=0). 
DY : Down pulse output point (MD=0).  
HO : Cumulative output pulse register.  

(Can be not assigned). 
CK : Pulse output point (MD=1). 
DR : Up/Down output point (MD=1).  
DIR: 1- up; 0- down. 

 
Y WX WY WM WS TMR CTR HR OR SR ROR DR K Range 

Ope- 
rand 

Yn of 
Main 
Unit 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

16/32-bit 
+/- number 

MD             0〜1 
Fr  ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 8〜2000 
PC  ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

UY，CK ○             
DY，DR ○             

HO   ○ ○ ○ ○ ○ ○ ○ ○* ○* ○  
 

z When MD=0, this instruction performs the pulse output control as following: 
z Whenever the output control “EN” changes from 0→1, it first performs the reset action, which is to clear the 

output flag “OUT” and “DN” as well as the pulse out register HO to be 0.  It gets the pulse frequency and 
output pulse count values, and reads status of up and down direction “U/D”, so as to determine the direction 
to be upward or downward.  As the reset finished, this instruction will check the input status of pause output 
“PAU”.  No action will be taken if the pause output is 1 (output pause).  If the PAU is 0, it will start to output 
the ON/OFF pulse with 50% duty at the frequency Fr to the UY(U/D=1) or DY(U/D=0) point. It will increment 
the value of HO register each time when a pulse is output, and will stop the output when HO register’s pulse 
count is equal to or greater than the cumulative pulse count of PC register and set the output complete flag 
“DN” to 1. During the time when output pulse is transmitting the output transmitting flag “OUT” will be set to 1, 
otherwise it will be 0. 

z Once it starts to transmit pulse, the output control “EN” should kept to 1.  If it is changed to 0, it will stop the 
pulse sending (output point become OFF) and the flag “OUT” changes back to 0, but the other status or data 
will keep unchanged.  However, when its “EN” changes again from 0 to 1, it will lead to a reset action and 
treat as a new start; the entire procedure will be restarted again. 

z If you want to pause the pulse output and not to restart the entire procedure, the ‘pause output’ “PAU” input 
can be used to pause it.  When “PAU” =1, this instruction will pause the pulse transmitting (output point is 
OFF, flag “OUT” change back to 0 and the other status or data keeps unchanged).  As it waits until the 
“PAU” changes back from 1 to 0, this instruction will return to the status before it is paused and continues the 
pulse transmitting output. 

z During the pulse transmission, this instruction will keep monitoring the value of pulse frequency Fr and output 
pulse count PC. Therefore, as long as the pulse output is not finished, it may allow the changing of the pulse 
frequency and pulse count.  However, the up/down direction “U/D” status will be got only once when it takes 
the reset action (“EN” changes from 0→1), and will keep the status until the pulse output completed or 
another reset occur. That is to say, except that at the very moment of reset, the change of “U/D” does not 
influence the operation of this instruction. 

z The main purpose of this instruction is to drive the stepping motor with the UY (upward) and DY (downward) 
two directional pulses control, so as to help you control the forward or reverse rotating of stepping motor.  
Nevertheless, if you need only single direction revolving, you can assign just one of the UY or DY (which will 
save one output point), and leaving the other output blank. In such case, the instruction will ignore the 
up/down input status of “U/D”, and the output pulse will send to the output point you assigned. 

9-58 



I/O instructions 

FUN 81  
PLSO 

PULSE OUTPUT 
FUN 81  

PLSO 

z When MD=1, the pulse output will reflect on the control output DIR (pulse direction. DIR=1, up; DIR=0, down) 
and CK (pulse output).   

z This instruction can only be used once, and UY (CK) and DY (DR) must be transistor output point on the PLC 
main unit.  

z The effective range of output pulse count PC for 16 bit operand is 0〜32767. For the 32 bit operand(  
instruction), it is 0〜2147483647. If the PC value = 0, it is treated as infinite pulse count, and this instruction 
will transmit pulses without end with HO value and “DN” flag set at 0 all the time. The effective range of pulse 
frequency (Fr) is 8〜2000. If the value PC or Fr exceeds the range, this instruction will not be carried out and 
the error flag “ERR” will set to 1.  

 

R         5

Y         1

Y         0

R         1

R         0

81D.PLSO

X1
PC :

U/D

PAU

X2

:

:

:

DY

HO

UY

EN
X0

:Fr M1
DN

ERR

OUT
M0

0MD:

 

z In this example, the program controls the stepping motor 
to drive forward for 80 pulses (steps) at the speed of 
100Hz first, and then makes it turn reverse for 40 pulses 
the speed of 50Hz. Make sure that the up/down direction, 
frequency Fr and the pulse count PC must be set before 
the reset take action(“EN” changes from 0→1). 

79

Pulse to output

Output pulse count

Output done

Frequency

R1 80

R5 0

100R0

M1

21 75 76 77

Under output

Down-pulse

Direction

Up-pulse

Output enable

Pause

Turn forward
100Hz going 80 steps

Forward

M0

Y1

Y0

X2

1 2

X1

X0

Reset
enable

76 77 78

Pause

re-start

79 80

40

0

50

1 2 4039

Turn reverse
50Hz going 40 steps

80

Reverse

Stop
(finished) Reset Start

1 2 40

(finished)
Stop

78

 

9-59 



I/O instructions 

FUN 82 
PWM 

PULSE WIDTH MODULATION 
FUN 82 
PWM 

ERR:ToEN

OT
Tp

:
:

82.PWM

Execution control Error flag

 

To : Pulse ON width 
 (0~32767mS) 

Tp : Pulse period 
 (1~32676mS) 

OT : Pulse output point 

 
Y WX WY WM WS TMR CTR HR IR OR SR ROR DR K Range 

Ope- 
rand 

Yn 
of main 

unit 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

0 
∣ 

32767 
To  ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
Tp  ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
OT ○              

 

z When execution control "EN" = 1, will send the pulse to output point OT with the "ON" state for To ms and 
period as Tp. OT must be a transistor output point on the main unit. When "EN" is 0, the output point will be 
OFF. 

Tp

To

 

z The units for Tp and To are mS, resolution is 1 mS. The minimum value for To is 0 (under such case the 
output point OT will always be OFF), and its maximum value is the same as Tp (under such case the output 
point OT will always be on). If To > Tp there will be an error, this instruction will not be carried out, and the 
error flag "ERR" will set to 1. 

z This instruction can only be used once. 
 

9-60 



I/O instructions 

FUN 83 
SPD 

SPEED DETECTION 
FUN 83 

SPD 

:TI
D :

83.SPD

EN S : OVFDetection control Overflow

 

S : Pulse input point for speed detection 
TI : Sampling duration  

 (units in mS) 
D : Register storing results 

 
X WX WY WM WS TMR CTR HR IR OR SR ROR DR K Range 

Ope- 
rand 

X0 
∣ 
X7 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

1 
∣ 

32767 
S ○              
TI  ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
D   ○ ○ ○ ○ ○ ○ ○ ○ ○* ○* ○  

 

z This instruction uses the interrupt feature of the 8 high speed input points (X0~X7) on the PLC main unit to 
detect the frequency of the input signal. Within a specific sampling time (TI), it will calculate the input pulse 
count for S input point, and indirectly find the revolution speed of rotating devices (such as motors). 

z While use this instruction to detect the rotating speed of devices, The application should design to generate 
more pulse per revolution in order to get better result, but the sum of input frequency of all detected signals 
should under 5KHz, otherwise the WDT may occur. 

z The D register for storing results uses 3 successive 16-bit registers starting from D (D0~D2). Besides D0 
which is used to store counting results, D1 and D2 are used to store current counting values and sampling 
duration. 

z When detection control "EN" = 1, it starts to calculate the pulse count for the S input point, which can be 
shown in D1 register. Meanwhile the sampling timer (D2) is switched on and keeps counting until the value of 
D2 is reach to the sampling period (TI). The final counted value is stored into the D0 register, and then a new 
counting cycle is started again. The sampling counting will go on repeating until "EN" = 0. 

z Because D0 only has 16 bits, so the maximum count is 32767. If the sampling period is too long or the input 
pulse is too fast then the counted value may exceed 32767, under that case the overflow flag will set to 1, and 
the counting action will stop. 

z Because the sampling period TI is already known and if every revolution of attached rotating device produces 
"n" pulses, then the following equation can be used to get the revolution  

speed : )rpm(10
TIn

60)0D(N 3　　×
×
×

=  

OVFEN
X20

:          1000TI
:     R        0D

:     X        0
83.SPD

S

 

z In the above example, if every revolution of the rotating 
device produces 20 pulses (n = 20), and the R0 value is 
200, then the revolution per minute speed "N" is as 

follows: rpm00　210
100060

60(200)N 3 =×
×

×
=  

R1b

1000ms

R1

R0

R2

0

0

R1a

a

1000ms

R1a

b c

1000ms

R1b

1000

X0

X20

R1c

R1c

 
 

9-61 



I/O instructions 

FUN 84 
7SGMO 

The handy instruction of FB-7SG module 
FUN 84 
7SGMO 

PT :

WSL/N

IT

:

:

84.7SGMO

Dn

Yn

N/D

EN S

:

:

:

Preceded zero selection

Decode selection

Execution control

 

S : Data register to be displayed. 
Yn : Output point preserved for controlled display   

module. 
Dn : Total digit (characters) to be displayed. 
PT : Decimal point flashing designation 

(Invalid for non-decoding display). 
IT : Brightness. 
WS : Working register for this instruction instance. 

 
Y WX WY WM WS TMR CTR HR IR OR SR ROR DR K Range 

Ope- 
rand 

Y0 
∣ 

Y240 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

16-bit 
+ number 

S  ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
Yn ○              
Dn  ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 1-8 
PT  ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 0-FFH 
IT  ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 1-16 

WS   ○ ○ ○ ○ ○ ○  ○ ○* ○* ○   

z This instruction is dedicated for 7-segment display module (FB-7SG). It use the table driven method to assign 
the display data address, number of displaying characters, brightness, position of decimal point, decode or 
non decode display, as well as if the leading zero displayed or not. It can greatly reduce the programming time 
and make the program simplified. 

z For the detailed explanation and example, please refer to chapter 17 “FB-7SG 7 segment LED display 
module”. 

9-62 



Temperature control instructions 2 

FUN 85 
TPSNS 

The convenient instruction for temperature measurement module  
(Brief function description) 

FUN 85 
TPSNS 

Execution
contro

sor

 

 

Tp : Type of temperature sensor, it can be J or 
K Type thermocouple.  

Pl : Polarity and the voltage range setting for 
temperature module. 

Zn : Total temperature points selection. 

Yn : Starting output point preserve for controlled 
temperature module. 

SR : Starting register for temperature measuring 
value storing. 

WR : Starting working register for the instance of 
this instruction. 

Brief function

R

Ope-
rand 

T
P
Z
Y
S
W

 

● This 
instru
serve

● This i
Hereb
usage

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

:Pl
Zn :

85.TPSNS
EN Tp : ERR

SR :
WR :

Yn :
ALM

l Parameter error

Temprature sen
line broking

Y HR ROR DR K ange 

 
Y0 
∣ 

Y255 

R0 
∣ 

R3839 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

 
 
 

p     0〜1 
l     0〜3 
n     6，12，18，24 
n ○     
R  ○ ○* ○  
R  ○ ○* ○  
 description  

instruction is dedicated for FB-4AJ(K)xx multiplexing temperature measuring module.  With this 
ction, the user can easily acquire multi points of temperature measuring values to provide monitoring or 
 as the Process Variable (PV) for PID temperature control. 

nstruction must incorporate with FB-4AJ(K)xx multiplexing temperature measuring module in its usage.  
y it introduced briefly about the function of this instruction only.  For details of the function, explanation, 
s and examples, please refer to Chapter 20 “Temperature measuring of FB-PLC and PID Control”. 

9-63 



Temperature control instructions 2 

FUN 86 
TPCTL 

Temperature measurement and control of temperature module  
(Brief description of its functions) 

FUN 86 
TPCTL 

Execution contro
Heating/Cooling

ameter error

rol warning
perature

 

 

Yn : Starting number for PWM temperature 
control output. 

Sn : The assigning of PID temperature control 
to be performed staring from which point. 

Zn : The number of PID temperature control 
points controlled by this instruction. 

Sv : Starting register number for temperature 
setting value storing. 

Os : Starting register number for temperature 
deviation value storing. 

PR : Starting register number for gain setting 
value storing. 

IR : Starting register number for integral time 
constant setting value storing. 

DR : Starting register number for differential 
time constant setting value storing. 

OR : Starting register number for temperature 

Brief function des

Ope-
rand 

Y
S
Z
S
O
P
I
D
O
W

● This instr
measurin
defined te
proper ou

● This inst
convenien
instruction
descriptio

 

 

:Sn
Zn :

86.TPCTL

EN Yn : ERR

Os :
PR :

Sv :
ALM

WR
OR

DR
IR

:
:

:
:

H/C
l
 

Par

cont
Tem

Y HR ROR DR K Range 

 
Y0 
∣ 

Y255 

R0 
∣ 

R3839 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 
 

n ○     
n     0〜23 
n     1〜24 
v  ○ ○* ○  
s  ○ ○* ○  
R  ○ ○* ○  
R  ○ ○* ○  
R  ○ ○* ○  
R  ○ ○* ○  
R  ○ ○* ○  
control value output storing. 

WR : Starting working register number for this 
instruction. 

cription  

uction treats the temperature value which measured by FB-4AJ(K)xx multiplexing temperature 
g module under the FUN85 (TPSNS) instruction as Process Variable (PV), and gets the user 
mperature Set Point (SP) together to be processed by software PID arithmetic operation to reach a 
tput control value, so as to control the temperature to fall within the range which user expected. 

ruction must incorporated with FB-4AJ(K)xx multiplexing temperature measuring module and 
t instruction of FUN85 for its usage.  Hereby it introduced briefly about the function of this 
 only. For details of the instruction function, explanation, usages and examples, please refer to 
ns of Chapter 20 “Temperature measuring of FB-PLC and PID Control”. 

9-64 



Cumulative timer instructions 

FUN87 T.01S 
FUN88 T.1S 
FUN89 T1S 

CUMULATIVE TIMER 
FUN87 T.01S 
FUN88 T.1S 
FUN89 T1S 

EN NUP
PV

87.T.01S

CVTIM :

:

TUP

89.T1S
88.T.1S

Time up

Time not upEnable control

Timing control

 

CV : Register storing elapse time  
(current value) 

PV : Preset value of timer 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C199 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

0 
∣ 

32767 
CV  ○ ○ ○ ○ ○ ○ ○ ○ ○* ○* ○  
PV ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 

 

z The operation for this instruction is the same as that for the basic timer (T0~T255), except that the basic timer 
only has a "timing control" input - when its input is 1 it starts timing, and when input is 0 it get clear. Every 
time the input changes, it starts timing again and is unable to accumulate. Timing with this instruction is only 
permissible when enable control "EN" = 1. With this instruction, when timing control "TIM" is 1, it is the same 
as a basic timer, but when "TIM" is 0, it does not clear, but keeps the current value. If the timer need to clear, 
then change enable control "EN" to 0. When timing control "TIM" is once again to be 1, it will continue to 
accumulate from the previous value when the timer last paused. In addition, this instruction also has two 
outputs, "Time up TUP" (when time up it is 1, usually it is 0) and "Time not up" (usually it is 1, when time is up 
it is 0). Users can utilize input and output combinations to produce timers with various different functions. For 
example: 

z On delay energizing timer:  

NUPEN

X0 89.T1S
:    R        0

:             10
TIM CV

PV

TUP
Y0

 

z This timer's output (Y0 in this example) is 
normally not energized. When this timer's 
input control (X0 in this example) is activated 
(ON), only after delay by 10 sec will output 
Y0 become energized (ON). 

z On delay de-energizing timer: 

X0
CV

89.T1S

TIM

EN
PV:             10

:    R        0 TUP

NUP
Y0

 

z The output Y0 of this timer is usually 
energized. When this timer's input control X0 
is on, only after delay by 10 sec will the 
output become de-energized (OFF). 

 

9-65 



Cumulative timer instructions  

FUN87 T.01S 
FUN88 T.1S 
FUN89 T1S 

CUMULATIVE TIMER 
FUN87 T.01S 
FUN88 T.1S 
FUN89 T1S 

z Off delay energizing timer: 

X0

:             10
:    R        0

PV
CVTIM

EN

89.T1S
TUP

NUP

Y0

 

z This timer's output Y0 is usually 
de-energized. When this timer's input control 
X0 is off, only after delay by 10 sec will 
output Y0 become energized (ON). 

z Off delay de-energizing timer:  

X0
:    R        0
:             10

89.T1S

EN

TIM CV
PV

TUP

NUP
Y0

 

z This timer's output Y0 is usually energized. 
When this timer's timing control X0 is off, 
only after delay by 10 sec will output Y0 
become de-energized (OFF). 

 

z The diagram below shows the relation on input and output for the above 4 kinds of timers. 

ON

OFF

ON

OFF delay de-energizing OFF

OFF

"ON" (X0 pressed down )

X0
10 S

ON

OFF

ON

10 S

10 S

"OFF" (X0 released)

OFF

OFF

OFF

ON

ON

ON

OFF

10 S

OFF delay energizing

ON delay de-energizing

ON delay energizing

9-66 



Watchdog timer instructions 

FUN 90  
WDT 

WATCHDOG TIMER 
FUN 90  

WDT 

EN

90P

WDT NExecution control
 

N : The watchdog time. The range of N is 5~120, unit 
in 10mS (i.e. 50ms~1.2 sec)  

z When execution control "EN" = 1 or "EN↑" (  instruction) transition from 0 to 1, will set the watchdog time 
to Nx10ms. If the scan time exceeds this preset time, PLC will shut down and not execute the application 
program. 

z The WDT feature is designed mainly as a safety consideration from the system view for the application. For 
example, if the CPU of PLC is suddenly damaged, and there is no way to execute the program or refresh I/O, 
then after the WDT time expired, the WDT will automatically switch off all the I/Os, so as to ensure safety. In 
certain applications, if the scan time is too long, it may cause safety problems or problems of 
non-conformance with control requirements. This instruction can used to establish the limitation of the scan 
time that you require. 

z Once the WDT time has been set it will always be kept, and there is no need to set it again on each scan. 
Therefore, in practice this instruction should use the  instruction. 

z Default WDT time is 0.25 sec. 

z For the operation principles of WDT please refer to the RSWDT(FUN 91) instruction. 

 

 

9-67 



Watchdog timer instructions 

FUN 91  
RSWDT 

RESET WATCHDOG TIMER 
FUN 91  

RSWDT 

EN RSWDT

91P

Execution control

 

This instruction has no operand. 

z When execution control "EN" = 1 or "EN↑" (  instruction), the WDT timer will be reset (i.e. WDT will start 
timing again from 0). 

z The functions of WDT have already been described in FUN90 (WDT instruction).  
The operation principles of watch dog timer are as follows: 

The watchdog timer is normally implemented by a hardware one-shot timer (it can not be software, 
otherwise if CPU fail, the timer becomes ineffective, and safeguards are quite impossible). "One-shot" 
means that after triggered the timer once, the timing value will immediately be reset to 0 and timing will 
restart. If WDT has begun timing, and never triggered it again, then the WDT timing value will continue 
accumulating until it reach the preset value of N, at that time WDT will be activated, and PLC will be shut 
down. If trigger the WDT once every time before the WDT time N has been reached, then WDT will never 
be activated. PLC can use this feature to ensure the safety of the system. Each time when PLC enters into 
system housekeeping after finished the program scanning and I/O refresh, it will usually trigger WDT once, 
so if the system functions normally and scan time does not exceed WDT time then WDT is never activated. 
However, if CPU is damaged and unable to trigger WDT, or the scan time is too long, then there will not be 
enough time to trigger WDT within the period N, WDT will be activated and will shut off PLC. 

z In some applications, when you set the WDT time (FUN90) to desire, the scan time of your program in certain 
situations may temporarily exceed the preset time of WDT. This situation can be anticipated and allowed for, 
and you naturally do not wish PLC to shut down for this reason. You can use this instruction to trigger WDT 
once and avoid the activation of WDT. This is the main purpose of this instruction. 

9-68 



 High speed counting/timing instructions 

FUN 92  
HSCTR 

Hardware High Speed Counter Current Value (CV) Access 
FUN 92  

HSCTR 

92P.HSCTR

CN:ENReatout control
 

CN : Hardware high speed counter number   
0: SC0 or HST0 
1: SC1 or HST1 
2: SC2 or HST2 
3: SC3 or HST3 
4: STA 

z The HSC0〜HSC3 counters of FB-PLC are 4 sets of 32bit high speed counter with the variety counting 
modes such as up/down pulse, pulse-direction, AB-phase. All the 4 high speed counters are built in the ASIC 
hardware and could perform count, compare, and send interrupt independently without the intervention of the 
CPU. In contrast to the software high speed counters HSC4〜HSC7, which employ interrupt method to 
request for CPU processing, hence if there are many counting signals or the counting frequency is high, the 
PLC performance (scanning speed) will be degraded dramatically. Since the current values CV of HSC0〜
HSC3 are built in the internal hardware circuits of ASIC, the user control program (ladder diagram) cannot 
retrieve them directly from ASIC. Therefore, it must employ this instruction to get the CV value from hardware 
HSC and put it into the register which control program can access. The following is the arrangement of CV, 
PV in ASIC and their corresponding CV, PV registers of PLC for HSC0~HSC3. 

 PLC register    ASIC  
  DR4096    CV  
 CV register H L      

HSC0  DR4098    PV HSC0 
 PV register H L      
  DR4100    CV  
 CV register H L      

HSC1  DR4102    PV HSC1 
 PV register H L      
  DR4104    CV  
 CV register H L      

HSC2  DR4106    PV HSC2 
 PV register H L      
  DR4108    CV  
 CV register H L      

HSC3  DR4110    PV HSC3 
 PV register H L      
  DR4152    CV  
 CV register H L      

HSTA  R4154    PV HSTA 
 PV register       

z When access control “EN” =1 or “EN↑” (  instruction) changes from 0→1, will gets the CV value of HSC 
designated by CN from ASIC and puts into the HSC corresponding CV register (i.e. the CV of HSC0 will be 
read and put into DR4096 or the CV of HSC1 will be read and put into DR4100). 

z Although the PV within ASIC has a corresponding PV register in CPU, but it is not necessary to access it 
(actually it can’t be) for that the PV value within ASIC comes from the PV register in CPU. 

z HSTA is a timer, which use 0.1ms as its time base.  The content of CV represents elapse time counting at 
0.1mS tick. 

z For detailed applications, please refer to Chapter 11 “The high speed counter and high speed timer of 
FB-PLC”. 

9-69 



High speed counting/timing instructions 

FUN 93  
HSCTW 

Hardware High Speed Counter Current Value and Preset Value(CV) Writing 
FUN 93  

HSCTW 

D

CNEN

93P.HSCTW

:

:
Write control

 

CN  : Hardware high speed counter to be written 
0: HSC0 or HST1 
1: HSC1 or HST2 
2: HSC2 or HST3 
3: HSC3 or HST4 
4: HSTA 

D  : Write target (0 represents CV, 1 represents PV) 

z Please refer first to FUN92 for the relation between the CV or PV value of HSC0〜HSC3 and HSTA within 
ASIC and their corresponding CV and PV registers in CPU. 

z When write control “EN”=1 or “EN↑” (  instruction) changes from 0→1, it writes the content of CV or PV 
register of high speed counter designed by CN of CPU, to the corresponding CV or PV of HSC within ASIC. 

z It is quit often to set the PV value for most application program, When the count value reaches the preset 
value, the counter will send out interrupt signal immediately. By way of the interrupt service program, you can 
implement different kinds of precision counting or positioning control. 

z When there is an interrupt of power supply for FB-PLC, the values of current value registers CV of HSC0〜
HSC3 within ASIC will be read out and wrote into the HSC0〜HSC3 CV registers (with power retentive 
function) of CPU automatically.  When power comes up, these CV values will be restored to ASIC. However, 
if your application demands that when power is on, the values should be cleared to 0 or begin counting from a 
certain value, then you have to use this instruction to write in the CV value for HSC in ASIC. 

z When write a non-zero value into the PV register of HSTA will cause the HSTAI interrupt subroutine to be 
executed for every PV×0.1ms.  

z For detailed applications, please refer Chapter 11 “The high speed counter and high speed timer of FB-PLC”. 

M0

:    CV
:    HSC0

D
CN

R4096RST
D

CN:    HSC0
M0

:    R 4098D
:    R       0S

8D.MOV

:    HSC0CN
D :    PV

M1

93.HSCTW

92.HSCTR

93.HSCTW

 

z As the program in the left diagram, when M0 changes from 0
→1, it clears the current value of HSC0 to 0, and writes into 
ASIC hardware through FUN93. 

z When M0 is 0, it reads out the current counting value. 

z When M1 changes from 0→1, it moves DR0 to DR4098, and 
writes into ASIC hardware through FUN93. 

z Whenever the current value equals to the DR0, The HSC0I 
interrupt sub program will be executed. 

 

9-70 



 Report printing instructions 

FUN 94 
ASCWR 

ASCII WRITE 
FUN 94 
ASCWR 

:Pt

ABT

PAU

94.ASCWR

EN
S :

DN

ERR

ACTMD :

Abort output

Pause output

Output control Acting

Error

Output completed
 

MD: Output mode   
=0, output to communication port1. 
others, reserved for future usage. 

S : Starting register of file data. 
Pt : Starting working register for this instruction 

instance. It taken up 8 registers and can’t 
be reused in other part of program. 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3967 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

0 
∣ 
1 

MD             ○ 
S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  
Pt  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  

 

z When MD=0 and output control “EN↑” changes from 0→1, it transmits the ASCII data which starting from S 
to the communication port 1 (Port1), until reach end of file.  

z S file data can be edited with the programming software PROLADDER or WinProladder (please refer to the 
explanation of chapter 15 “ASCII function application”.). If necessary the user can also edit the ASCII file 
directly by change the value of data registers. However, the edited data must be follow the ASCII file format 
(the details described in chapter 15), otherwise, this instruction will halt the transmission and set the error flag 
“ERR” to 1.  If the entire file is correctly and successfully transmitted, then the output is completed and “DN” 
is set to 1. 

z The control input of this instruction is of positive edge triggered.  Once “EN↑” changes from 0→1 then this 
instruction starts the execution, until finished the transmission of the entire file then the execution is completed. 
During the transmission, the action flag “ACT” will be kept at 1 all the time. Only when output pause, error, or 
abort occurs, will it change back to 0. 

z This instruction can be repeatedly used, but only one will be executed (transmit data) at any certain time. It is 
the obligation of user to make sure the right execution sequence. 

z While this instruction is in execution, if the pause “PAU” is 1, this instruction will pause the transmission of file 
data. It will resume transmission when the pause “PAU” backs to 0. 

z While this instruction is in execution, if the abort “ABT” is 1, this instruction will abandon the transmission of 
file data, and then it is able to take next instruction for execution. 

z Whenever using the FUN94 (ASCWR) instruction, it must first set the DIP switches on the CPU main unit to 
SW−1 OFF & SW−2 ON position. 

z For detail applications, please refer to chapter 15 “The Application of ASCII function”. 

 

 

9-71 



Report printing instructions  

FUN 94 
ASCWR 

ASCII WRITE 
FUN 94 
ASCWR  

z Interface signals: 
M1927: This signal is control by CPU, it is applied in ASCWR MD:0 

: ON, it represents that the RTS (connect to the CTS of PLC) of the printer is “False”.   
  I.e. the printer is not ready or abnormal. 
: OFF, it represents that the RTS of the Printer is “True”; Printer is Ready.  

Note: Using the M1927 associates with timer can detect if the printer is abnormal or not. 

R4158: The setting of communication parameters (refer to section 12.6.2) 

9-72 



 Slow up/Slow down instructions 

FUN 95 
RAMP 

Ramp Function for D/A Output 
FUN 95 
RAMP 

95.RAMP

EN

U/D

PAU S :

S

D :

:

Tn

PV

:

::

ERR

ASU

ASLL

U

Pause output

Up/Down output

Ramp control

 

Tn : Timer for ramp function 
PV : Preset value of ramp timer (the unit is 0.01 second)  

or the increment value of every 0.01 second 
SL : Lower limit value  

(ramp floor value). 
SU : Upper limit value 

(ramp ceiling value). 
D : Register storing current ramping value. 
D+1 : Working register 
SU, SL could be positive or negative value when incorporate 
with AO module application. 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

16-bit 
+/- number 

Tn     ○         
PV ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
SL ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
SU ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
D  ○ ○ ○ ○ ○ ○  ○ ○ ○* ○  

 
Description  

z Tn must be a 0.01 sec time base timer and never used in other part of program. 

z PV is the preset value of ramp timer. Its unit is 10ms (0.01 second). 

z When input control “EN↑” changes from 0→1, it first reset the timer Tn to 0. 
When  “U/D”=1 it will load the value of SL to register D. And when M1974 = 0 it will be increased by SU−SL / 
PV every 0.01 sec or when M1974 = 1 it will increase by PV every 0.01 sec. When the D value reaches the 
SU value the output “ASU” =1.  
When  “U/D”=0 it will load the value of SU to register D. When M1974 = 0 it will be decreased by SU−SL / PV 
every 0.01 sec or when M1974 = 1 it will be decreased by PV every 0.01 sec. When the D value reaches the 
SL value the output “ASL” =1. 

z The ramping direction(U/D) is determined at the time when input control “EN↑” changes from 0→1. After the 
output D start to ramp, the change of U/D is no effect. 

z If it is required to pause the ramping action, it must let the input control “PAU” = 1; when “PAU”=0, and the 
ramping action is not completed, it will continue to complete the ramping action. 

z The value of SU must be larger than SL, otherwise the ramp function will not be performed, and the output 
“ERR” will set to 1. 

z This instruction use the register D to store the output ramping value; if the application use the D/A module to 
send the speed command, then speed command can be derived from the RAMP function to get a more 
smooth movement. 

z In addition to use register D to store the ramping value, this instruction also used the register D+1 to act as 
internal working register; therefore the other part of program can not use the register D+1. 

 

9-73 



Slow up/Slow down instructions  

FUN 95 
RAMP 

Ramp Function for D/A Output 
FUN 95 
RAMP 

 Program example  

L

U

95.RAMPM0

M1

M2

M0

EN

PAU

U/D

Tn

PV

S

S

D

:T20

:R100

:R101

:R102

:R103

ERR

ASL

ASU

M102

M101

M100

EN S

D

8.MOV

: R103

: R3904

 

Move the ramping value to AO output register 
R3904 

T20:  Ramp timer (timer with 0.01 second time base)  
R100: preset value of ramp timer (the unit is 0.01 second, 100 for a second). 
R101: Lower limit value. 
R102: Upper limit value. 
R103: Register storing current ramp value. 
R104: Working register 

z If M1974=0, When input control M0 changes from 0→1, it first reset the timer T20 to 0.  If M2=1, it will load 
the R101 (lower limit) value into the R103, and it will increase the output with fixed value (R102-R101 / R100) 
for every 0.01 second and stores it to register R103. When the T2 timer going up to the preset value R100, 
the output value equals to R102, and the output M102 will set to 1.  If M2=0, will load the R102 (upper limit) 
value into the R103, and it will decrease the output amount with fixed ratio (R102-R101 / R100) for every 0.01 
second and store it to register R103. The T2 timer going up to the preset value R100, the output value equals 
to R102, and the output M101 will set to 1. 

z M1=1, pause the ramping action. 

z The value of R102 must be greater than R101, otherwise the ramp action will not be performed, and the 
output M100 will set to 1. 

S

S

t

U

L

PV PV  

9-74 



Communication instructions 

FUN 96 
LINK2 

Convenient Instruction for Communication Port2 (RS-485)  
  (Brief description of function) 

FUN 96 
LINK2 

ACT

ERR

DNABT

PAU

EN
:S

Pt :

96.LINK2
MD :

Pause

Abort

Execution control

 

MD : Communication mode, MD0〜MD3.  

S : Starting register of communication program. 

Pt : Starting working register for instruction operation. 

 

HR ROR DR K Range 

Ope- 
rand 

R0 
∣ 

R3839 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 
 

MD    0〜3 
S ○ ○ ○  
Pt ○ ○* ○  

 

● When use this instruction, the PLC will automatically set operation mode of port 2 to be “ladder instruction 
control interface” when the PLC is at RUN mode, and give the control right of port2 to ladder instruction. 
When PLC stops, the Port2 will return back to “standard interface” and not to be controlled by this 
instruction. This instruction provides 4 instruction modes MD0〜MD3. Of which, three instruction modes 
MD0〜MD2, are “regular link network”, and the MD3 is the “high speed link network”. The following are the 
function description of respective modes. For the details, please refer to section 13.1.2 for explanation. 

hMD0 : Master station mode for FACON CPU LINK.  
For any PLC, whose ladder program contains the FUN96:MD0 instruction, will become master 
station of FACON CPU LINK network. The master station PLC will base on the communication 
program stored in data registers in which the target station, data type, data length, etc, were 
specified to read or write slave station via “FACON FB-PLC Communication Protocol” command. 
With this approach up to 254 PLC stations can share the data each other 

hMD1 : Active ASCII data transmission mode.  
With this mode, the FUN96 instruction will parse the communication program stored in data 
registers and base on the parsing result send the data from port2 to ASCII peripherals (such as 
computer, other brand PLC, inverter, moving sign, etc, this kind of device can command by ASCII 
message). The operation can set to be (1) transmit only, which ignores the response from 
peripherals, (2) transmit and then to receive the response from peripherals. When operate with 
mode (2) then the user must base on the communication protocol of peripheral to parsing and 
prepare the response message by writing the ladder instructions. 

hMD2 : Passive ASCII data receiving mode. 
With this mode, the FUN96 will first wait to receive ASCII messages sent by external ASCII 
peripherals (such as computer, other brand PLC, card reader, bar code reader, electronic weight, 
etc. this kind of device can send ASCII message). Upon receiving the message, the user can base 
on the communication protocol of peripheral to parsing and react accordingly. The operation can 
set to (1) receive only without responding, or (2) receive then responding. For operation mode (2) 
the user can use the table driver method to write a communication program and after received a 
message this instruction can base on this communication program automatically reply the 
message to peripheral. 

hMD3 : Master station mode of FACON high speed CPU LINK. 
The most distinguished difference between this mode and MD0 is that the communication 
response of MD3 is much faster than MD0. With The introduction of MD3 mode CPU LINK, The 
FACON PLC can easily to implement the application of distributed control and real time data 
monitoring. 

 

 

 

9-75 



Communication instructions 

FUN 97 
LINK1 

Convenient Instruction for Communication Port2 (RS-485) 
  (Brief description of function) 

FUN 97 
LINK1 

ACT

ERR

DNABT

PAU

EN
:S

Pt :

97.LINK2
MD :Execution control

Pause

Abort

 

MD : Communication mode, MD0〜MD2. 

S : Starting register for communication program. 

Pt : Starting working register for instruction operation. 

 
HR ROR DR K Range 

Ope- 
rand 

R0 
∣ 

R3839 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 
 

MD    0〜2 
S ○ ○ ○  
Pt ○ ○* ○  

 

● The operation and usage of the three instruction modes of MD0〜MD2 is identical to that of MD0〜MD2 for 
FUN96, please refer to FUN96(LINK2) and chapter 13 for explanation. 

 

9-76 



Table instructions 

Table Instructions  
 

Fun No. Mnemonic Functionality Fun No. Mnemonic Functionality 

100 R→T Register to table data move 107 T_FIL Table fill 

101 T→R Table to register data move 108 T_SHF Table shift 

102 T→T Table to table data move 109 T_ROT Table rotate 

103 BT_M Block table move 110 QUEUE Queue 

104 T_SWP Block table swap 111 STACK Stack 

105 R-T_S Register to table search 112 BKCMP Block compare 

106 T-T_C Table to table compare 113 SORT Data Sort 

● A table consists of 2 or more consecutive registers (16 or 32 bits). The number of registers that comprise the 
table is called the table length (L). The operation object of the table instructions always takes the register as 
unit (i.e. 16 or 32 bit data). 

● The operation of table instructions are used mostly for data processing such as move, copy, compare, search 
etc, between tables and registers, or between tables. These instructions are convenient for application. 

● Among the table instructions, most instructions use a pointer to specify which register within a table will be 
the target of operation. The pointer for both 16 and 32-bit table instructions will always be a 16-bit register. 
The effective range of the pointer is 0 to L-1, which corresponds to registers T0 to TL-1 (a total of L registers). 
The table shown below is a schematic diagram for 16-bit and 32-bit tables.  

● Among the table operations, shift left/right, rotate left/right operations include a movement direction. The 
direction toward the higher register is called left, while the direction toward the lower register is called right, as 
shown in the diagram below. 

Pointer Pr  Pointer Pr 
 4   2 
 B15  B0   B15  B0 

(right) 
B15 

B0
 
B31           B0 

T0 R0 T0 R1 R0 
T1 R1 T1 R3 R2 
T2 R2 T2 R5 R4 
T3 R3 T3 R7 R6 
T4 R4 

――┐ 
│ 
│ 
│ 
│ 

(right)│ 
│ 
│ 
│ 
│ 

←―┘ T4 R9 R8 

――┐ 
│ 
│ 
│ 
│ 

(right)│ 
│ 
│ 
│ 
│ 

←―┘

．
．
．
．
．
． 

．
．
．
．
．
． 

 

．
．
．
．
．
． 

．
．
．
．
．
． 

 

TL−1 RL-1 (left) TL−1 R 2L−1 R 2L−2 (left) 

       Table length 

 

︷

16bit table 

       Table length 

 

︷

32bit table 

T T 

 

9-77 



Table instructions 

FUN100  
R→T 

REGISTER TO TABLE MOVE  
FUN100  

R→T 

Td :
INC

CLR
Pr

L
:
: ERR

Rs

100DP.R

EN :

T
ENDMove control

Pointer increment

Pointer cleaar

Move to end

Pointer error

 

Rs : Source data , can be constant or register 

Td : Source register for destination table 

L : Length of destination table 

Pr : Pointer register  

Rs, Td can associate with V,Z index register as 
indirect addressing 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

16/32bit 
+/- 

number 

V 
、 
Z 

Rs ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
Td  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  ○ 
L       ○    ○* ○ 2~2048  
Pr  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○   

 

● When move control "EN" = 1 or "EN↑" (  instruction) transition from 0 to 1, the contents of the source 
register Rs will be written onto the register Tdpr indicated by the pointer Pr within the destination table Td 
(length is L). Before executing, this instruction will first check the pointer clear "CLR" input signal. If "CLR" is 
1, it will first clear the pointer Pr, and then carry out the move operation. After the move has been completed, 
it will then check the Pr value. If the Pr value has already reached L-1 (point to the last register in the table) 
then it will only set the move-to-end flag "END" to 1, and finish execution of this instruction. If the Pr value is 
less than L-1, then it must again check the pointer increment "INC" input signal. If "INC" is 1, then Pr value 
will be also increased. Besides, pointer clear "CLR" is able to operate independently, without being 
influenced by other input. 

● The effective range of the pointer is 0 to L-1. Beyond this range, the pointer error "ERR" will be set to 1, and 
this instruction will not be performed. 

ERRL :          8INC

CLR
Pr

X1
:     R        0

100P.R

:     R      10

EN

Td

Rs

T
END

:     R      50

 

z The example at left at the very beginning pointer Pr = 4, 
the entire content of table Td is 0, and the Rs value is 
8888. The diagram below shows the operation results 
when X1 have the transition of 0→1 twice. 

z Because INC is 1, Pr will increase by 1 each time the 
instruction is executed. 

 

   Pr   Pr   Pr  
   4 R50  5 R50  6 R50 

   Td   Td   Td  
   0 0 0 0 R10(T0) 0 0 0 0 R10 0 0 0 0 R10 
   0 0 0 0 R11(T1) 0 0 0 0 R11 0 0 0 0 R11 
 Rs  0 0 0 0 R12(T2) 0 0 0 0 R12 0 0 0 0 R12 

R0 8 8 8 8 0 0 0 0 R13(T3) 0 0 0 0 R13 0 0 0 0 R13 
   0 0 0 0 R14(T4) 8 8 8 8 R14 8 8 8 8 R14 
   0 0 0 0 R15(T5) 0 0 0 0 R15 8 8 8 8 R15 
   0 0 0 0 R16(T6) 0 0 0 0 R16 0 0 0 0 R16 
   0 0 0 0 R17(T7) 

X0＝  
(First) 
Ö 

0 0 0 0 R17 

X0＝  
(Second) 
Ö 

0 0 0 0 R17 

 

Before First time result Second time result 
 

9 -78 



Table instructions 

FUN101  
T→R 

TABLE TO REGISTER MOVE 
FUN101  

T→R 

:EN Ts

L

Pr

Rd
CLR

INC

:

:

:

101DP.T R

END

ERR

Pointer clear

Pointer increment

Move control Move to end

Pointer error

 

Ts : Source table starting register 
L : Length of source table 
Pr : Pointer register 
Rd : Destination register 
Ts, Rd may combine with V, Z to serve indirect 
address application 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

16/32bit 
+/- 

number 

V 
、 
Z 

Ts ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  ○ 
L       ○    ○* ○   
Pr  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○ 2~2048  
Rd  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  ○ 

 

z When move control "EN" = 1 or "EN↑" (  instruction) transition from 0 to 1, the value of the register Tspr 
specified by pointer Pr within source table Ts (length is L) will be written into the destination register Rd. Before 
executing, this instruction will first check the input signal of pointer clear "CLR". If "CLR" is 1, it will first clear Pr 
and then carry out the move operation. After completing the move operation, it will then check the value of Pr. 
If the Pr value has already reached L-1 (point to the last register in the table), then it sets the move-to-end flag 
to 1, and finishes executing of this instruction. If Pr is less than L-1, it check the status of "INC". If "INC" is 1, 
then it will increase Pr and finish the execution of this instruction. Besides, pointer clear "CLR" can execute 
independently and is not influenced by other inputs. 

z The effective range of the pointer is 0 to L-1. Beyond this range the pointer error "ERR" will be set to 1 and this 
instruction will not be carried out. 

X0

:          9L

:     R     19
:     R     20

INC

CLR

Pr

:     R       0

101P.T

EN Ts

R

ERR

END

Rd

 

z In the example at left, at the very beginning Pr = 7 and Ts 
and Rd are as shown at left in the diagram below. When X0 
have a transition from 0→1 twice, the results are shown at 
right in the diagram below. 

z At the second time execution, the pointer has already 
reached to the end so there will be no increment. 

 

 Ts  Pr   Pr   Pr  
R0(T0) 1 1 1 1  7 R19 8 R19 8 R19 
R1(T1) 2 2 2 2        
R2(T2) 3 3 3 3        
R3(T3) 4 4 4 4  Rd  Rd  Rd  
R4(T4) 5 5 5 5  0000 R20 8 8 8 8 R20 9 9 9 9 R20 
R5(T5) 6 6 6 6       
R6(T6) 7 7 7 7  END  END  END  
R7(T7) 8 8 8 8   0   

X0＝  
(first) 
Ö 

 0   

X0＝  
(second) 
Ö 

 1   
R8(T8) 9 9 9 9         

Before execution  First time execution Second time execution 

 

 

 

9-79 



Table instructions 

FUN102  
T→T 

TABLE TO TABLE MOVE 
FUN102  

T→T 

ENDEN

INC

CLR

:L

Pr :

Ts

Td :
:

ERR

T102DP.T

Pointer increment Pointer error

Move to end

Pointer clear

Move control

 

Ts : Starting number of source table register 
Td : Starting number of destination table 

register 
L : Table (Ts and Td) length 
Pr : Pointer register 
Ts, Rd may combine with V, Z to serve 
indirect address application 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

2 
∣ 

2048 

V 
、 
Z 

Ts ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  ○ 
Td  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  ○ 
L       ○    ○* ○ ○  
Pr  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○   

 

z When move control "EN" = 1 or "EN↑" (  instruction) have a transition from 0 to 1, the register Tspr pointed 
by pointer Pr within the source table will be moved to a register Tdpr, which also pointed by the pointer Pr in the 
destination table. Before execution, it will first check the input signal of pointer clear "CLR". If "CLR" is 1, it will 
first clear Pr to 0 and then do the move (in this case Ts0→Td0). After the move action has been completed it 
will then check the value of pointer Pr. If the Pr value has already reached L-1 (point to the last register on the 
table), then it will set the move-to-end flag "END" to 1 and finish executing of this instruction. If the Pr value is 
less than L-1, it will check the status of "INC". If "INC" is 1, then the Pr value will be increased by 1 before 
execution. Besides, pointer clear "CLR" can execute independently, and will not be influenced by other input. 

z The effective range of the pointer is 0 to L-1. Beyond this range, the pointer error flag "ERR" will be set to 1, 
and this instruction will not be carried out. 

Td
INC

CLR
Pr

L

:     R      10

:         10

Ts

102P.T

EN :     R        0

T

ERR

END
X0

:     R      20

 

z The diagram at left below is the status before execution. 
When X0 from 0→1, the content of R5 in Ts table will copy to 
R15 and pointer R20 will be increased by 1. 

  Pr     Pr 
 R20 5    R20 6 
 Ts   Td   Td 

R0 1 1 1 1  R10 0 0 0 0 R10 0 0 0 0 
R1 1 1 1 1  R11 0 0 0 0 R11 0 0 0 0 
R2 1 1 1 1  R12 0 0 0 0 R12 0 0 0 0 
R3 1 1 1 1  R13 0 0 0 0 R13 0 0 0 0 
R4 1 1 1 1 R14 8 8 8 8 R14 8 8 8 8 
R5 1 1 1 1  R15 0 0 0 0 R15 1 1 1 1 
R6 1 1 1 1  R16 0 0 0 0 R16 0 0 0 0 
R7 1 1 1 1  R17 0 0 0 0 

X0＝  
Ö 

R17 0 0 0 0 
R8 1 1 1 1  R18 0 0 0 0  R18 0 0 0 0 
R9 1 1 1 1  R19 0 0 0 0  R19 0 0 0 0 

Before execution  result 
 

9-80 



Table instructions 

FUN103  
BT_M 

BLOCK TABLE MOVE 
FUN103  

BT_M 

103DP.BT_M

Td
L

TsEN

:
:

:Move control

 

Ts :Starting register for source table 

Td : Starting register for destination table 

L: Lengths of source and destination tables  

Ts, Rd may combine with V, Z to serve indire  

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

2 
∣ 

256 

V 
、 
Z 

Ts ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  ○ 
Td  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  ○ 
L       ○    ○* ○ ○  

 

z In this instruction the source table and destination table are the same length. When this instruction was 
executed all the data in the Ts table is completely copied to Td. No pointer is involved in this instruction. 

z When move control "EN" = 1 or "EN↑" (  instruction) have a transition from 0 to 1, all the data from source 
table Ts (length L) is copied to the destination table Td, which is the same length. 

z One table is completely copied every time this instruction is executed, so if the table length is long, it will be 
very time consuming. In practice, P modifier should be used to avoid time waste caused by each scan 
repeating the same movement action. 

X0
:     R         0

:          10
:     R       10

L

EN

Td

Ts

103P.BT_M

 

z The diagram at left below is the status before execution. When 
X0 from 0→1, the content of R0~R9 in Ts table will copy to 
R10~R19. 

 
 

 Ts   
Td   

Td 
R0 0 0 0 0 ――→ R10 0 0 0 0 R10 0 0 0 0 
R1 1 1 1 1 ――→ R11 0 0 0 0 R11 1 1 1 1 
R2 2 2 2 2 ――→ R12 0 0 0 0 R12 2 2 2 2 
R3 3 3 3 3 ――→ R13 0 0 0 0 R13 3 3 3 3 
R4 4 4 4 4 ――→ R14 0 0 0 0 R14 4 4 4 4 
R5 5 5 5 5 ――→ R15 0 0 0 0 R15 5 5 5 5 
R6 6 6 6 6 ――→ R16 0 0 0 0 R16 6 6 6 6 
R7 7 7 7 7 ――→ R17 0 0 0 0 

X0＝  
Ö 

R17 7 7 7 7 
R8 8 8 8 8 ――→ R18 0 0 0 0  R18 8 8 8 8 
R9 9 9 9 9 ――→ R19 0 0 0 0  R19 9 9 9 9 

Before executed  
Execute 

result 
 
 

9-81 



Table instructions 

FUN104  
T_SWP 

BLOCK TABLE SWAP 
FUN104  

T_SWP 

104DP.T_SWP

L

Ta

Tb

EN
:
:

:Move control

 

Ta : Starting register of Table a 
Tb : Starting register of Table b 
L : Lengths of Table a and b 
Ts, Rd may combine with V, Z to serve indirect 
address application 

 
WY WM WS TMR CTR HR OR SR ROR DR K XR Range 

Ope- 
rand 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

2 
∣ 

256 

V 
、 
Z 

Ta ○ ○ ○ ○ ○ ○ ○ ○* ○* ○  ○ 
Tb ○ ○ ○ ○ ○ ○ ○ ○* ○* ○  ○ 
L      ○   ○* ○ ○  

 

z This instruction swaps the contents of Tables a and b, so the table must be the same length, and the registers 
in the table must of write able. Since a complete swap is done with each time the instruction is executed, no 
pointer is needed. 

z When move control "EN" = 1 or "EN↑" (  instruction) have a transition from 0 to 1, the contents of Table a 
and Table b will be completely swapped. 

z This instruction will swap all the registers specified in L each time the instruction is executed, so if the table 
length is big, it will be very time consuming, therefor P instruction should be used. 

X0

:     R       10
:          10

:     R         0TaEN

Tb
L

104P.T_SWP

 

z The diagram at left below is the status before execution. 
When X0 from 0→1, the contents of R0~R9 in Ts table will 
swap with R10~R19. 

 

 Ta 
 

Tb   Ta 
 

Tb 
R0 0 0 0 0 R10 1 1 1 1 R0 1 1 1 1 R10 0 0 0 0 
R1 0 0 0 0 R11 1 1 1 1 R1 1 1 1 1 R11 0 0 0 0 
R2 0 0 0 0 R12 1 1 1 1 R2 1 1 1 1 R12 0 0 0 0 
R3 0 0 0 0 R13 1 1 1 1 R3 1 1 1 1 R13 0 0 0 0 
R4 0 0 0 0 R14 1 1 1 1 R4 1 1 1 1 R14 0 0 0 0 
R5 0 0 0 0 R15 1 1 1 1 R5 1 1 1 1 R15 0 0 0 0 
R6 0 0 0 0 R16 1 1 1 1 R6 1 1 1 1 R16 0 0 0 0 
R7 0 0 0 0 R17 1 1 1 1 

X0＝  
Ö 

R7 1 1 1 1 R17 0 0 0 0 
R8 0 0 0 0 R18 1 1 1 1  R8 1 1 1 1 R18 0 0 0 0 
R9 0 0 0 0 R19 1 1 1 1  R9 1 1 1 1 R19 0 0 0 0  

Before executed  After executed 
 

9-82 



Table instructions 

FUN105  
R-T_S 

REGISTER TO TABLE SEARCH  
FUN105  

R-T_S 

:EN Rs

Ts

Pr
D/S

FHD L :
:

:

105DP.R−T_S
FND

ERR

ENDSeach from head

Different/same option

Seach control Found objective

Seach to end

Pointer error

 

Rs : Data to search, It can be a constant 
or a register 

Ts : Starting register of table being 
searched 

L : Label length 
Pr : Pointer of table 
Rs, Ts may combine with V, Z to serve 
indirect address application  

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

16/32-bit 
+/- number 

V 
、 
Z 

Rs ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
Ts ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  ○ 
L       ○    ○* ○ 2~256  
Pr  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○   

 

z When search control "EN" = 1 or "EN↑" (  instruction) has a transition from 0 to 1, will search from the first 
register of Table Ts (when "FHD" = 1 or Pr value has reached L-1), or from the next register (Tspr + 1) pointed 
by the pointer within the table ("FHD" = 0, while Pr value is less than L-1) to find the first data different with 
Rs(when D/S = 1) or find the first data the same with Rs (when D/S = 0). If it find a data match the condition it 
will immediately stop the search action, and the pointer Pr will point to that data and found objective flag "FND" 
will set to 1. When the searching has searched to the last register of the table, the execution of the instruction 
will stop, whether it was found or not. In that case the search-to-end flag "END" will be set to 1 and the Pr value 
will stop at L-1. When this instruction next time is executed, Pr will automatically return to the head of the table 
(Pr = 0) before the search begin. 

z The effective range of Pr is 0 to L-1. If the value exceeds this range then the pointer error flag "ERR" will 
change to 1, and this instruction will not be carried out. 

X0

Ts :     R        0

:         10

D/S

FHD

Pr

L

105P.R−T_S

:       5555EN Rs

END

ERR

FND

:     R      20

 

z The instruction at left is searching the table for a register with the 
value 5555 (because D/S = 0, it is searching for same value). 
Before execution, the pointer point to R2, but the starting point of 
the search is Pr + 1 (i.e. it starts from R3). After X0 has transition 
from 0→1 3 times, the results of each search may be obtained 
as shown in the diagram below. 

 Pr   Ts     Pr  FND  END 

R20 2  R0 5 5 5 5   R20 6 1  0 
   R1 0 0 0 0        
  R2 5 5 5 5       
 Rs R3 2 2 2 2 ← 

cX0＝  
(First) 

 Pr FND  END 

 5 5 5 5 
 

R4 3 3 3 3  

Start 
point 

R20 9 0  1 
   R5 4 4 4 4        
   R6 5 5 5 5        
   R7 6 6 6 6   

dX0＝  
(Second) 

 Pr 

 

FND  END 

   R8 7 7 7 7   R20 0  1  0 
   R9 8 8 8 8   

eX0＝  
(Third)       

 

Before execution  After execution 
 

9-83 



Table instructions 

FUN106  
T-T_C 

TABLE TO TABLE COMPARE 
FUN106  

T-T_C 

106DP.T−T_C

D/S

FHD

EN

Pr

L
:
:

Ta

Tb

:
:

END

ERR

FND Found objective

Pointer error

Compare to end

Comparison control

Compare from head

Different/same option
 

Ta : Starting register of Table a 
Tb : Starting register of Table b 
L  : Lengths of Table 
Pr : Pointer 
Ta, Tb may combine with V, Z to serve 
indirect address application 

 

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

2 
∣ 

256 

V 
、 
Z 

Ta ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  ○ 
Tb ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  ○ 
L       ○    ○* ○ ○  
Pr  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○    

z When comparison control "EN" = 1 or "EN↑" (  instruction) has a transition from 0 to 1, then starting from 
the first register in the tables Ta and Tb (when "FHD" = 1 or Pr value has reached L-1) or starting from the next 
pair of registers (Tapr+1 and Tbpr+1) pointed by Pr ("FHD" = 0, while Pr is less than L-1), this instruction will 
search for pairs of registers with different values (when "D/S" = 1) or the same value (when "D/S" = 0). When 
search found (either different or the same), it will immediately stop the search and the pointer Pr will point to 
the register pairs met the search criteria. The found flag "FND" will be set to 1. When it has searched to the last 
register of the table, the instruction will stop executing. whether it found or not. The compare-to-end flag "END" 
will be set to 1, and the pointer value will stop at L-1. When this instruction is executed next time, Pr will 
automatically return to the head of the table to begin the search. 

z The effective range of Pr is 0 to L-1. The Pr value should not changed by other programs during the operation. 
As this will affect the result of the search. If the Pr value not in the effective range, the pointer error flag "ERR" 
will be set to 1, and this instruction will not be carried out. 

Ta FNDEN :     R        0

Tb

L

Pr

FHD

D/S

:              10

ERR

END

106P.T−T_CX0

:     R      10

:     R      11

 

z The instruction at left starts from the register next to the register 
pointed by the pointer (because "FHD" is 0) to search for register 
pairs with different data (because "D/S" is 1) within the 2 tables. 
At the very beginning, Pr points to Ta1 and Tb1. There are 3 
different pairs of data at the position 1,3,6 of the table.  
However, it does not compare from the beginning, and this 
instruction will start searching from position 3 downwards. After 
X0 has changed 3 times from 0 to 1, the results are shown in the 
diagram below.  

 Pr            
R10 1     

 
      

 Ta   Tb     Pr  F  E
R0 0 0 0 0 R11 0 0 0 0   R10 3 1  0 
R1 1 1 1 1 R12 0 0 0 0        
R2 2 2 2 2 

 
R13 2 2 2 2 ←      

R3 3 3 3 3 R14 1 2 3 4  

cX0＝  
(First) 

 Pr F  E
R4 4 4 4 4 R15 4 4 4 4  

Start 
point 

R10 6 1  0 
R5 5 5 5 5 R16 5 5 5 5        
R6 6 6 6 6 R17 0 0 0 0        
R7 7 7 7 7 R18 7 7 7 7   

dX0＝  
(Second) 

 Pr 

 

F  E
R8 8 8 8 8 R19 8 8 8 8   R10 9  0  1 
R9 9 9 9 9 R20 9 9 9 9   

eX0＝  
(Third)       

 

Before execution  After execution 

9-84 



Table instructions 

FUN107  
T_FIL 

TABLE FILL 
FUN107  

T_FIL 

107DP.T_FIL

EN

Td
L :

Rs :

:
Fill control

 

Rs : Source data to fill, can be a constant or a register 

Td : Starting register of destination table 

L  :Table length 

Rs, Td may combine with V, Z to serve indirect address 
application 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

16/32-bit 
+/- 

number 

V 
、 
Z 

Ts ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
Td  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  ○ 
L       ○    ○* ○ 2~256  

 

z When fill control "EN" = 1 or "EN↑" (  instruction) has a transition from 0 to 1, the Rs data will be filled into 
all the registers of the table Td. 

z This instruction is mainly used for clearing the table (fill 0) or unifying the table (filling in the same values). It 
should be used with the P instruction. 

X0 107P.T_FIL
:        5555

:          10
:     R         0

EN

L

Ts

Td

 

z The instruction at left will fill 5555 into the whole table 
Td. The results are as shown in the diagram below. 

 

  Td   
Td 

 R0 1 5 4 7 R0 5 5 5 5 
 R1 2 3 1 4 R1 5 5 5 5 
 R2 7 7 2 5 R2 5 5 5 5 

Rs R3 0 0 1 3 R3 5 5 5 5 
5 5 5 5 R4 5 2 4 7 R4 5 5 5 5 

 R5 1 9 2 5 R5 5 5 5 5 
 R6 6 7 4 4 R6 5 5 5 5 
 R7 5 3 1 9 

X0＝  
Ö 

R7 5 5 5 5 
 R8 9 7 8 8  R8 5 5 5 5 
 

 

R9 2 7 9 6  R9 5 5 5 5  

Before execution  After execution 
 

9-85 



Table instructions 

FUN108  
T_SHF 

TABLE SHIFT 
FUN108  

T_SHF 

:IW

L/R

:

:

:
:

L
OW

Ts

Td

108DP.T_SHF

EN

Left/Right direction

Shift control

 

IW : Data to fill the room after shift operation, can be a 
constant or a register 

Ts : Source table  

Td : Destination table storing shift results 

L : Lengths of tables Ts and Td 

OW : Register to accept the shifted out data 

Ts, Td may combine with V, Z to serve indirect address 
application  

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

16/32-bit 
+/- 

number 

V 
、 
Z 

IW ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  
Ts ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  ○ 
Td  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  ○ 
L       ○    ○* ○ 2~256  

OW  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○   
 

z When shift control "EN" = 1 or "EN↑" (  instruction) has a transition from 0 to 1, all the data from table Ts will 
be taken out and shifted one position to the left (when "L/R" = 1) or to the right (when "L/R" = 0). The room 
created by the shift operation will be filled by IW and the results will be written into table Td. The data shifted 
out will be written into OW. 

:     R      11

:     R        0

:     R        0
:     R      10

X1 Ts

Td

OW

L/R

L :         10

X0
IW

108P.T_SHF

EN

 

z In the program at left, Ts and Td is the same table. 
Therefore, the table shifts itself and then writes back to 
itself (the table must be writ able). It first perform a shift left 
operation (let X1 = 1, and X0 go from 0→1) then perform a  
shift to right operation (let X1 = 0, and makes X0 go from 0
→1). The result are shown at right in the diagram below. 

 
    Ts(Td)     (Shift left) (Shift right) 
        Td(Ts)   Td(Ts) 
   R0 0 0 0 0     R0 1 2 3 4 R0 0 0 0 0 
 (Shift left) R1 1 1 1 1     R1 0 0 0 0 R1 1 1 1 1 
   R2 2 2 2 2    R2 1 1 1 1 R2 2 2 2 2 
   R3 3 3 3 3   OW R3 2 2 2 2 R3 3 3 3 3 

R10 1 2 3 4  R4 4 4 4 4  R11 × × × ×  
 
R4 3 3 3 3 R4 4 4 4 4 

   R5 5 5 5 5     R5 4 4 4 4 R5 5 5 5 5 
   R6 6 6 6 6    R6 5 5 5 5 R6 6 6 6 6 
   R7 7 7 7 7    R7 6 6 6 6 

 

R7 7 7 7 7 
   R8 8 8 8 8 

 
 

   R8 7 7 7 7  R8 8 8 8 8 
   R9 9 9 9 9 (Shift left)  R9 8 8 8 8  R9 1 2 3 4 
        OW   OW 

Dotted line    is the path for shift right   R11 9999  R11 1234 

  

  

 

Before execution  cFirst time dSecond time 
 

9-86 



Table instructions 

FUN109  
T_ROT 

TABLE ROTATE 
FUN109  

T_ROT 

109DP.T_ROT

Td

TsEN

L/R L

:
:
:Left/Right direction

Rotate control

 

Ts : Source table for rotate 

Td : Destination table storing results of rotation 

L  : Lengths of table 

Ts, Td may combine with V, Z to serve indirect address 
application 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

2 
∣ 

256 

V 
、 
Z 

Ts ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  ○ 
Td  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  ○ 
L       ○    ○* ○ ○  

 

z When rotation control "EN" = 1 or "EN↑" (  instruction) has a transition from 0 to 1, the data from the table of 
Ts will be rotated 1 position to the left (when "L/R" = 1)or 1 position to the right (when "L/R" = 0). The results of 
the rotation will then be written onto table Td. 

X0
:     R        0
:     R        0
:              10

109P.T_ROT

EN

L/R

Ts

Td
L

X1

 

z In the program at left, Ts and Td is the same table. The 
table after rotation will write back to itself. It first perform 
one left rotation (let X1 = 1, and X0 go from 0→1), and 
then performs one right rotation (let X1 = 0, and X0 go 
from 0→1). The results are shown at right in the diagram 
below. 

 

Rotate left  Rotate right (Rotate left)  (Rotate right) 
  Ts(Td)    Td(Ts)   Td(Ts) 
 R0 0 0 0 0 (right)  R0 9 9 9 9 R0 0 0 0 0 
R1 1 1 1 1   R1 0 0 0 0 R1 1 1 1 1 
R2 2 2 2 2   R2 1 1 1 1 R2 2 2 2 2  
R3 3 3 3 3   R3 2 2 2 2 R3 3 3 3 3 

  R4 4 4 4 4    R4 3 3 3 3 R4 4 4 4 4 
  R5 5 5 5 5   R5 4 4 4 4 R5 5 5 5 5 

 R6 6 6 6 6   R6 5 5 5 5 R6 6 6 6 6 
 R7 7 7 7 7   R7 6 6 6 6 

 

R7 7 7 7 7 
 R8 8 8 8 8   R8 7 7 7 7  R8 8 8 8 8 
 R9 9 9 9 9 (left)  R9 8 8 8 8  R9 9 9 9 9 

 

Before execution cFirst time     dSecond time 
 

9-87 



Table instructions 

FUN110  
QUEUE 

QUEUE 
FUN110  

QUEUE 

110DP.QUEUE

I/O

EN

OW:
Pr

L
:
:

IW

QU

:
:

FUL

ERR

EPT

Pointer error

Queue

Queue emptyExecution control

In/Out control

 

IW : Data pushed into queue, can be a constant 
or a register 

QU : Starting register of queue 
L  : Size of queue 
Pr : Pointer register  
OW : Register accepting data popped out from 

queue 
QU may combine with V, Z to serve indirect 
address application  

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

16/32-bit 
+/- number 

V 
、 
Z 

IW ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  
QU  ○ ○ ○ ○ ○ ○  ○ ○ ○* ○  ○ 
L       ○    ○* ○ 2~256  
Pr  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○   

OW  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○   
 

z Queue is also a kind of table. It is different from ordinary table in that its queue register numbers go from 1 to L 
and not from 0 to L-1. In other words QU1~QUL respectively correspond to pointers Pr = 1 to L, and Pr = 0 is 
used to show that the queue is empty. 

z Queue is a first in first out (FIFO) device, i.e. - the data that first pushed into the queue will be the first to pop 
out from the queue. A queue is comprised of L consecutive 16 or 32 bit registers (  instruction) starting from 
the QU register, as in the diagram below: 

 
   Pr   
   4   

IW   QU   
g5555  QU1 f4444   

  QU2 e3333   
  QU3 d2222   
  QU4 c1111 
  QU5    
   
   
  

    c〜gis the sequence number of 
operation QUL 

push(I/O=1)  
1.IW always push into 
QU1 
2.Pr＋1→Pr 

P
d
 

 

 

z When execution control "EN" = 1 or "EN↑" (  instruct
control "I/O" determines whether the IW data will be push
and transferred to OW (when "I/O" = 0). As shown in the
into the first (QU1) register of the queue. After it has been
that the pointer can always point to the first data that wa
data pointed by Pr will be transferred directly to OW. Pr w
remained in the queue. 

 

9-88 
ush 
OW 
   × × × ×  

  
  
  

    
   

own 

Pop out(I/O=0)  
1. QUpr →OW 
2. Pr－1→Pr 

 

ion) has a transition from 0 to 1, the status of in/out 
ed into the queue (when "I/O" = 1) or be popped out 
 diagram above, the IW data will always be pushed 
 pushed in, Pr will immediately be increased by 1, so 
s pushed into the queue. When it is popped out, the 
ill be reduced by 1, so that it still point to the first data  



Table instructions 

FUN110  
QUEUE 

QUEUE 
FUN110  

QUEUE 

z If no data has yet been pushed into the queue or the pushed in data has already been popped out (Pr = 0), 
then the queue empty flag will be set to 1. In this case, even if there is further popping out action, this 
instruction will not be executed. If data is only pushed in and not popped out, or pushed in is more than that 
popped out, then the queue finally becomes full (pointer Pr indicates the QUL position), and the queue full flag 
is changed to 1. In this case, if there is more pushing in action, this instruction will not execute. The pointer for 
this instruction is used during access of the queue, to indicate the data that was pushed in the earliest. Other 
programs should not be allowed to change it, or else an operation error will be created. If there is a specific 
application, which requires the setting of a Pr value, then its permissible range is 0 to L (0 means empty, and 1 
to L respectively correspond to QU1 to QUL). Beyond this range, the pointer error flag "ERR" will be set as 1, 
and this instruction will not be carried out.  

:    R       0EN

X1 QU

OW

I/O

Pr

L

:    R       2

:    R       1
:    R     20

:        10

X0 110P.QUEUE
EPT

ERR

FUL

IW

 

z The program at left assumes the queue content is the 
same with the queue at preceding page. It will first 
perform queue push operation , and then perform pop  
out action. The results are shown below. Under any 
circumstance, Pr always point to the first (oldest) data 
that was remained in queue. 

 

 Pr       Pr     
 5       4     

 QU       QU     
QU1 5 5 5 5 R2     QU1 5 5 5 5 R2    
QU2 4 4 4 4 R3     QU2 4 4 4 4 R3    
QU3 3 3 3 3 R4     QU3 3 3 3 3 R4    
QU4 2 2 2 2 R5  OW   QU4 2 2 2 2 R5  OW  
QU5 1 1 1 1 R6 × × × R20  QU5  R6  1 1 1 1 R20 
QU6  R7  ↑   QU6  R7    
QU7  R8 OW unchanged  QU7  R8    
QU8  R9   QU8  R9    
QU9  R10   QU9  R10    
QU10  R11   QU10  R11    

 

After push in (X1=1，X0 from 0→1)  After pop off (X1=0，X0 from 0→1) 
 

9-89 



Table instructions 

FUN111  
STACK 

STACK 
FUN111  

STACK 

111DP.STACK

I/O

EN

:OW
Pr

L
:
:

ST

IW :
:

ERR

FUL

EPT

In/Out control

Execution control Stack empty

Stack full

Pointer error

 

IW : Data pushed into stack, can be a constant 
or a register 

ST : Starting register of stack 
L  : Size of stack 
Pr : Pointer register  
OW : Register accepting data popped out from 

stack 
ST may combine with V, Z to serve indirect 
address application 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

16/32-bit 
+/- 

number 

V 
、 
Z 

IW ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  
ST  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  ○ 
L       ○    ○* ○ 2~256  
Pr  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○   

OW  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○   
 

z Like queue, stack is also a kind of table. The nature of its pointer is exactly the same as with queue, i.e. Pr = 1 
to L, which corresponds to ST1 to STL, and when Pr = 0 the stack is empty. 

z Stack is the opposite of queue, being a last in first out  (LIFO) device. This means that the data that was most 
recently pushed into the stack will be the first to be popped out of the stack. The stack is comprised of L 
consecutive 16 or 32-bit (  instruction) registers starting from ST, as shown in the following diagram: 

  Pr    
 4    

c〜g is the sequence 
number of operation  ST    

  ST1 c1111 ← Bottom of stack  
  ST2 d2222    
  ST3 e3333    

IW ST4 f4444  OW 
g5555     ST5    × × × ×  

      
      
   

push 
   

      
  STL     

pop(I/O=0)  
1.STpr→OW 
2.Pr－1→Pr 

push(I/O=1)  
1.Pr＋1→Pr 
2.IW→STpr 

z When execution control "EN" = 1 or "EN↑" (  instruction) has a transition from 0 to 1, the status of in/out 
control "I/O" determines whether the IW data will be pushed into the stack (when "I/O" = 1), or the data pointed 
by Pr within the stack (the data most recently pushed into the stack) will be moved out and transferred to OW 
(when "I/O" = 0). Note that the data pushed in is stacking, so before pushed in, Pr will increased by 1 to point 
to the top of the stack then the data will be pushed in. When it is popped out, the data pointed by pointer Pr 
(the most recently pushed in data) will be transferred to OW. After then Pr will decreased by 1. Under any 
circumstances, the pointer Pr will always point to the data that was pushed into the stack most recently. 

9-90 



Table instructions 

FUN111  
STACK 

STACK 
FUN111  

STACK 

z When no data has yet been pushed into the stack or the pushed in data has already been popped out (Pr = 0), 
the stack empty flag "EPT" will set to 1. In this case any further pop up actions, will be ignored. If more data is 
pushed than popped out, sooner or latter the stack will be full (pointer Pr points to STL position), and the stack 
full flag "FUL" will set to 1. In this case any further push actions, will be ignored. As with queue, the stack 
pointer in normal case should not be changed by other instructions. If there is a special application which 
requires to set the Pr value, then its effective range is 0 to L (0 means empty, 1 to L respectively correspond to 
ST1 to STL). Beyond this range, the pointer error flag "ERR" will set to 1, and the instruction will not be carried 
out. 

X0

X1

IWEN :    R       0

OW

I/O

Pr

L

ST :    R       2

:            10
:    R       1
:    R     20

111P.STACK
EPT

FUL

ERR

 

z The program at left assumes that the initial content of 
the stack is just as in the diagram of a stack on the 
preceding page. The operation illustrated in this example 
is to push a data and than pop it from stack. The results 
are shown below. Under any circumstances, Pr always 
point to the data that was most recently pushed into the 
stack. 

 

 Pr       Pr     
 5 R1      4     

 ST       QU     
ST1 1 1 1 1 R2     ST1 1 1 1 1 R2    
ST2 2 2 2 2 R3     ST2 2 2 2 2 R3    
ST3 3 3 3 3 R4     ST3 3 3 3 3 R4    
ST4 4 4 4 4 R5  OW   ST4 4 4 4 4 R5  OW  
ST5 5 5 5 5 R6 × × × R20  ST5  R6  5 5 5 5 R20 
ST6  R7  ↑   ST6  R7    
ST7  R8 OW unchanged  ST7 R8    
ST8  R9   ST8 R9    
ST9  R10   ST9 R10    
ST10  R11   ST10 R11    

 

After push(X1=1，X0 from 0→1)  After pop up(X1=0，X0 from 0→1) 
 

 

9-91 



Table instructions 

FUN112  
BKCMP 

BLOCK COMPARE（DRUM） 
FUN112  

BKCMP 

112DP.BKCMP

EN

L

D

Ts

Rs

:

:

:
: ERRComparison control Limit error

 

Rs : Data for compare, can be a constant or a 
register 

Ts : Starting register block storing upper and 
lower limit  

L : Number of pairs of upper and lower limits 

D : Starting relay storing results of comparison 

 
Y M S WX WY WM WS TMR CTR HR IR OR SR ROR DR K Range 

Ope- 
rand 

Y0 
∣ 

Y255 

M0 
∣ 

M999 

S0 
∣ 

S999 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

16/32-bit 
+/- 

number 

Rs    ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
Ts    ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  
L          ○    ○* ○ 1~256 
D ○ ○ ○              

 

z When comparison control "EN" = 1 or "EN↑" ( instruction) has a transition from 0 to 1, comparisons will be 
perform one by one between the contents of Rs and the upper and lower limits form by L pairs of 16 or 32-bit 
(  modifier) registers starting from the Ts register (starting from T0 each adjoining 2 register units form a pair 
of upper and lower limits). If the value of Rs falls within the range of the pair, then the bit within the comparison 
results relay D which corresponds to that pair will be set to 1. Otherwise it will be set as 0 until comparison of 
all the L pairs of upper and lower limits is completed. 

z When M1975=0, if there is any pair where the upper limit value is less than the lower limit value, then the limit 
error flag "ERR" will be set to 1, and the comparison output for that pair will be 0.  

z When M1975=1, there is no restriction on the relation of upper limit and lower limit, this can apply for 360 °

rotary electronic drum switch application. 

 Upper limit Lower limit Result Compare 
 

Compared 
value 

  
 

0 TS1 TS0 D0 

1 TS3 TS2   D1 
      

L−1 TS2L−1 TS2L−2  

Rs 

 DL−1 

z Actually this instruction is a drum switch, which can be used in interrupt program and when incorporate with 
immediate I/O instruction (IMDIO) can achieve an accurate electronic drum. 

Rs ERR:    C         0

:         360

:    R       10

:               4

:    Y        5

CLR

CK C    0

PV:

D

L

Ts

:

:

:

112.BKCMP

EN
X0

X1

C0

 

z In this program, C0 represents the rotation angle (Rs) of 
a drum shaft. The block compare instruction performs a 
comparison between Rs and the 4 pairs (L = 4) of upper 
and lower limits, R10,R11, R12,R13, R14,R15 and 
R16,R17. The comparison results can be obtained from 
the four drum output points Y5 to Y8. 

z The input point X1 is a rotation angle detector mounted 
on the drum shaft. With each one degree rotation of the 
drum shaft angle, X1 produces a pulse. When the drum 
shaft rotates a full cycle, X1 produces 360 pulses. 

9-92 



Table instructions 

FUN112  
BKCMP 

BLOCK COMPARE（DRUM） 
FUN112  

BKCMP 

z The program in the diagram above coordinates a rotary encoder or other rotating angle detection device 
(directly connect to a rotating mechanism), which can form a mechanical device equivalent to the mechanical 
structure of an actual drum (see mechanism shown within dotted line in diagram below). While the upper and 
lower limits are being adjusted, you can change at will the range of the activated angle of the drum. This 
cannot be done with the traditional drum mechanism. 

Equivalent mechanical drum emulated by above program 

X1

8090

40

Limit sw

320

0

Y5

140

180

220

180

Y6

60

Y7

200

80

Y8

Rotary encoder

Rotating   
．mechanism

 

 

280 320 360
C0

0 40 80

Y5

Y6

Y7

Y8

40

80

60

80

120 160 200 240

140

200

180

 
 

 

 

 

 

9-93 



Table instructions 

FUN113  
SORT 

DATA SORTING 
FUN113  

SORT 

113DP.SORT
:SEN

:L
:D

ERRSort control

 

S : Starting register of source registers to sort 
D : Starting register of destination registers to store the 

data after sorted 
L : Total register for sorting 

 
TMR CTR HR IR OR SR ROR DR K Range 

Ope- 
rand 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

2 
∣ 

127 

S ○ ○ ○ ○ ○ ○ ○ ○  
D   ○    ○* ○  
L   ○    ○ ○ ○ 

 

● When sort control "EN" = 1 or "EN↑" (  instruction) has a transition from 0 to 1, will sort the registers with 
ascending order (if A/D = 1) or descending order (if A/D = 0) and put the sorted result to the registers starting 
by D register. 

● The valid data length of sort operation is between 2 and 127, other length will set the “ERR” to 1 and the sort 
operation will not perform. 

L

X0
EN

A/D

S

D

:     R         0
:     R       10
:               10

113DP.SORT

 

˙The example at left sorts the table comprised of R0~R9 
and stores the sorted data to the table locate at 
R10~R19. 

 

 S   D 
R0 1 5 4 7 R10 0 0 1 3 
R1 2 3 1 4 R11 1 5 4 7 
R2 7 7 2 5 R12 1 9 2 5 
R3 0 0 1 3 R13 2 3 1 4 
R4 5 2 4 7 R14 2 7 9 6 
R5 1 9 2 5 R15 5 2 4 7 
R6 6 7 4 4 R16 5 3 1 9 
R7 5 3 1 9 R17 6 7 4 4 
R8 9 7 8 8 R18 7 7 2 5 
R9 2 7 9 6 

X0＝  

Ö 

R19 9 7 8 8 
 

Before After 
 

9-94 



Matrix instructions 

 
Matrix Instructions  

 
 
Fun No. Mnemonic Functionality Fun No. Mnemonic Functionality 

120 MAND Matrix AND 126 MBRD Matrix Bit Read 

121 MOR Matrix OR 127 MBWR Matrix Bit Write 

122 MXOR Matrix XOR 128 MBSHF Matrix Bit Shift 

123 MXNR Matrix XNOR 129 MBROT Matrix Bit Rotate 

124 MINV Matrix Inverse 130 MBCNT Matrix Bit Count 

125 MCMP Matrix Compare    

● A matrix is comprised of 2 or more consecutive 16-bit registers. The number of registers comprising the 
matrix is called the matrix length (L). One matrix altogether has L ×16 bits (points), and the basic unit of the 
object for each operation is bit. 

● The matrix instructions treats the 16 ×L matrix bits  as a set of series points( denoted by M0 to M16L-1). 
Whether the matrix is formed by register or not, the operation object is the bit not numerical value. 

● Matrix instructions are used mostly for discrete status processing such as moving, copying, comparing, 
searching, etc, of single point to multipoint (matrix), or multipoint-to-multipoint. These instructions are 
convenient, important for application. 

● Among the matrix instructions, most instruction need to use a 16-bit register as a pointer to points a specific 
point within the matrix. This register is known as the matrix pointer (Pr). Its effective range is 0 to 16L-1, 
which corresponds respectively to the bits M0 to M16L-1 within the matrix. 

● Among the matrix operations, there are shift left/right, rotate left/right operations. We define the movement 
toward higher bit is left direction, while the movement toward lower bit is right direction, as shown in the 
diagram below. 

 ←―  Width is 16 bit  ―→ 
 M15  M  M0 (right) 4

 
 
 
 
 
 

Pr  
0  
↓ ↓ 
R0 
R1 
R2 1 
R3 
R4 

 

 
 
 
 
 
 
 
 
 
 
 
 

RL−1 

↑ 
│ 
│ 
 

length 
L  
 
│ 
│ 
↓ 

M 4 0  

Pr=40, po in t  
to  M 4 0 ,  

↑ 
M16L−1(left) 

9-95 



Matrix instructions 

FUN120   
MAND 

MATRIX AND  
FUN120  

MAND 

120P.MAND

EN
:Mb

Md

L :

:

Ma:Operation control

 

Ma : Starting register of source matrix a 
Mb : Starting register of source matrix b 
Md : Starting register of destination matrix  
L  : Length of matrix (Ma, Mb and Md) 
Ma, Mb, Md may combine with V, Z to serve indirect 
address application 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

2 
∣ 

256 

V 
、 
Z 

Ma ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  ○ 
Mb ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  ○ 
Md  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  ○ 
L       ○    ○* ○ ○  

 

z When operation control "EN" = 1 or "EN↑" (  instruction) has a 
transition from 0 to 1, this instruction will perform a logic AND (only 
if 2 bits are 1 will the result be 1, otherwise it will be 0)operation 
between two source matrixes with a length of L, Ma and Mb. The 
result will then be stored in the destination matrix Md, which is also 
the same length (the AND operation is done by bits with the same 
bit numbers). For example, if Ma0 = 0, Mb0 = 1, then Md0 = 0; if 
Ma1 = 1, Mb1 = 1, then Md1 = 1; etc, right up until AND reaches 
Ma16L-1 and Mb16L-1. 

AND

L

Ma Mb Md

 

 

120P.MAND

:    R       10

:    R       20

:    R         0

:               5

EN
X0

:Md

L :

Ma

Mb:

 

z In the program at left, when X0 goes from 0→1, then 
matrix Ma, comprised by R0 to R4, and matrix Mb, 
comprised by R10 to R14, will do an AND operation. The 
results will be stored back in matrix Md, comprised by 
R20 to R24. The result is shown at right in the diagram 
below. 

 

 
Ma15 
↓ Ma Ma0 

↓ 
 Mb15 
↓ Mb Mb0 

↓ 
 Md15 
↓ Md Md0 

↓ 
R0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
R1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 R11 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 R21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
R2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 R12 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 R22 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
R4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 
↑ 
Ma79  ↑ 

Ma64  ↑ 
Mb79  

↑ 
Mb64  ↑ 

Md79  
↑ 

Md64 

 Before execution  After execution 
 

9-96 



Matrix instructions 

FUN121  
MOR 

MATRIX OR 
FUN121  

MOR 

121P.MOR

EN

Mb:

Md

L :

:

Ma:Operation control

 

Ma : Starting register of source matrix a 

Mb : Starting register of source matrix b 

Md : Starting register of destination matrix  

L  : Length of matrix (Ma, Mb and Md) 

Ma, Mb, Md may combine with V, Z to serve indirect 
address application 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

2 
∣ 

256 

V 
、 
Z 

Ma ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  ○ 
Mb ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  ○ 
Md  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  ○ 
L       ○    ○* ○ ○  

 

z When operation control "EN" = 1 or "EN↑" (  instruction) has a 
transition from 0 to 1, this instruction will perform a logic OR(If any 
2 of the bits are 1, then the result will be 1, and only if both are 0 
will the result be 0) operation between 2 source matrixes with a 
length of L, Ma and Mb. The result will then be stored in the 
destination matrix Md, which is also the same length (the OR 
operation is done by bits with the same bit numbers). For example, 
if Ma0 = 0, Mb0 = 1, then Md0 = 1; if Ma1 = 0, Mb1 = 0, then Md1 = 
0; etc, right up until OR reaches Ma16L-1 and Mb16L-1. 

 OR

L

Ma Mb Md

 

 

121P.MOR

:    R         0

:          5

:    R       10

:    R       10
EN

X0

Md:

L :

Ma

Mb:

 

z In the program at left, when X0 goes from 0→1, then matrix 
Ma, comprised by R0 to R4, and matrix Mb, comprised by 
R10 to R14, will do an OR operation. The results will then 
be stored into the destination matrix Md, comprised by R10 
to R14. In this example, Mb and Md is the same matrix, so 
after operation the source matrix Mb will replaced by the  
new value. The result is shown at right in the diagram 
below. 

 

 
Ma15 
↓ Ma Ma0 

↓  Mb15 
↓ Mb Mb0 

↓  Md15 
↓ Md Md0 

↓ 
R0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
R1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 R11 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 R21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
R2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 R12 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 R22 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
R4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 
↑ 

Ma79 
 ↑ 

Ma64 
 
↑ 

Mb79  
↑ 

Mb64 
 
↑ 

Md79  
↑ 

Md64 

 Before execution  After execution 

9-97 



Matrix instructions 

FUN122  
MXOR 

MATRIX EXCLUSIVE OR（XOR） 
FUN122  

MXOR 

:
:

122P.MXOR

:

:
Md

L

EN

Mb

MaOperation control

 

Ma : Starting register of source matrix a 

Mb : Starting register of source matrix b 

Md : Starting register of destination matrix  

L  : Length of matrix (Ma, Mb and Md) 

Ma, Mb, Md may combine with V, Z to serve indirect 
address application 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

2 
∣ 

256 

V 
、 
Z 

Ma ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  ○ 
Mb ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  ○ 
Md  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  ○ 
L       ○    ○* ○ ○  

 

z When operation control "EN" = 1 or "EN↑" (  instruction) has a 
transition from 0 to 1, this instruction will performs a logic XOR (if 
the 2 bits are different, then the result will be 1, otherwise it will be 
0)between 2 source matrixes with a length of L, Ma and Mb. The 
result will then be stored back into the destination matrix Md, which 
also has a length of L. For example the XOR operation is done by 
bits with the same bit numbers - for example, if Ma0 = 0, Mb0 = 1, 
then Md0 = 1; if Ma1 = 1, Mb1 = 1, then Md1 = 0; etc, right up until 
XOR reaches Ma16L-1 and Mb16L-1. 

XOR

L

Ma Mb Md

 

 

X0 122P.MXOR

:

:

:    R       20

:    R       10
:    R         0

::               5L

EN Ma

Mb

Md

 

z In the program at left, when X0 goes from 0→1, will 
perform a XOR operation between matrix Ma, comprised 
by R0 to R4, and matrix Mb, comprised by R10 to R14. 
The results will then be stored in destination matrix Md, 
comprised by R20 to R24. The results are shown at right 
in the diagram below. 

 

 
Ma15 
↓ Ma Ma0 

↓  Mb15 
↓ Mb Mb0 

↓  Md15 
↓ Md Md0 

↓ 
R0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
R1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 R11 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 R21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
R2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 R12 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 R22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
R4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
↑ 

Ma79 
 ↑ 

Ma64 
 
↑ 

Mb79  
↑ 

Mb64 
 
↑ 

Md79  
↑ 

Md64 

 Before execution  After execution 
 

9-98 



Matrix instructions 

FUN123  
MXNR 

MATRIX ENCLUSIVE OR（XNR） 
FUN123  

MXNR 

123P.MXNR

L :

EN
:Mb

Md:

Ma:Operation control

 

Ma : Starting register of source matrix a 
Mb : Starting register of source matrix b 
Md : Starting register of destination matrix  

L  : Length of matrix (Ma, Mb and Md)  

Ma, Mb, Md may combine with V, Z to serve indirect 
address application 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

2 
∣ 

256 

V 
、 
Z 

Ma ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  ○ 
Mb ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  ○ 
Md  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  ○ 
L       ○    ○* ○ ○  

 

z When operation control "EN" = 1 or "EN↑" (  instruction) has a 
transition from 0 to 1, will perform a logic XNR operation (if the 2 
bits are the same, then the result will be 1, otherwise it will be 
0)between 2 source matrixes with a length of L, Ma and Mb. The 
results will then be stored into the destination matrix Md, which 
also has the same length (the XNR operation is done by bits with 
the same bit numbers). For example, if Ma0 = 0, Mb0 = 1, then Md0 
= 0; Ma1 = 0, Mb1 = 0, then Md1 = 1; etc, right up until XNR 
reaches Ma16L-1 and Mb16L-1. 

 XNR

L

Ma Mb Md

 

 

123P.MXNRX0

:    R       10

:    R       10
:    R         0

:               5

EN

Md

L :

:
Mb

Ma
:

 

z When operation control "EN" = 1 or "EN↑" (  instruction) 
goes from 0 to 1, will perform a XNR operation between Ma 
matrix comprised by R0~R9 and Mb matrix comprised by 
R10~R19. The results will then be stored into the 
destination matrix Md comprised by R10~R19. The results 
are shown at right in the diagram below. 

 

 
Ma15 
↓ Ma Ma0 

↓  Mb15 
↓ Mb Mb0 

↓  Md15 
↓ Md Md0 

↓ 
R0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
R1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 R11 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 R21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
R2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 R12 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 R22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
R4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 
↑ 

Ma79 
 ↑ 

Ma64 
 
↑ 

Mb79  
↑ 

Mb64 
 
↑ 

Md79  
↑ 

Md64 

 Before execution  After execution 

9-99 



Matrix instructions 

FUN124  
MINV 

MATRIX INVERSE 
FUN124  

MINV 

:EN Ms

Md
L :

:

124P.MINV

Operation control

 

Ms : Starting register of source matrix 

Md : Starting register of destination  

L  : Length of matrix (Ms and Md)  

Ma, Md may combine with V, Z to serve indirect address 
application 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

2 
∣ 

256 

V 
、 
Z 

Ms ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  ○ 
Md  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  ○ 
L       ○    ○* ○ ○  

z When operation control "EN" = 1 or "EN↑" (  instruction) has a 
transition from 0 to 1, source register Ms, which has a length of L, 
will be completely inverted (all the bits with a value of 1 will change 
to 0, and all those with a value of 0 will change to 1). The results 
will then be stored into destination matrix Md. 

Ms

L

Ms

Md

Inverse

 

 

 

EN
X0

Ms :     R       0

:     R       0
:              5L

Md

124P.MINV

 

z In the program at left, when X0 goes from 0→1, the 
matrix comprised by R0 to R4 will be inverted, and then 
store back into itself (because in this example Ms and 
Md are the same matrix). The results obtained are 
shown at right in the diagram below. 

 

 
Ms15 
↓ Ms 

Ms0 
↓ 

 Md15 
↓ Md 

Md0 
↓ 

R0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
R1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 R1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
R2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 R2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 
R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
R4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
↑ 
Ms79  ↑ 

Ms64 
↑ 
Md79  

↑ 
Md64 

 

 Before execution  After execution 
 

9-100 



Matrix instructions 

FUN125  
MCMP 

MATRIX COMPARE  
FUN125  

MCMP 

Mb
FHD

D/S
Pr

L
:
: END

ERR

Ma

125P.MCMP

EN :
:

FND

Different/Same option

Compare from head

Comparison control Found objective

Compare to end

Pointer error

 

Md : Starting register of matrix a 
Mb : Starting register of matrix b 
L  : Length of matrix (Ma, Mb)  
Pr : Pointer register 
Ma, Mb may combine with V, Z to serve 
indirect address application 

 

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

2 
∣ 

256 

V 
、 
Z 

Ma ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  ○ 
Mb ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  ○ 
L       ○    ○* ○ ○  
Pr  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○   

 

z When comparison control "EN" = 1 or "EN↑" (  instruction) has a 
transition from 0 to 1, then beginning from the top pair of bits (Ma0 and 
Mb0) within the 2 matrixes Ma and Mb (when "FHD" = 1 or Pr value is 
equal to 16L-1), or beginning from the next pair of bits (Mapr + 1 and 
Mbpr + 1) pointed by pointer Pr (when "FHD" = 0 and Pr value is less 
than L-1), this instruction will compare and search for pairs of bits with 
different value (when D/S = 1) or the same value (when D/S = 0). Once 
match found, pointer Pr will point to the bit number in the matrix met the 
search condition. The found objective flag "FND" will be set to 1. When 
it has searched to the final pair of bits in the matrix (Ma16L-1, Mb16L-1), 
this execution of the instruction will finish, no matter it has found or not. 
If this happen then The compare-to-end flag "END" will be set as 1, and 
the Pr value will set to 16L-1 and the next time that this instruction is 
executed, Pr will automatically return to the starting point of the matrix 
(Pr = 0) to begin the comparison search. 

Ma   : MbL pr

Ma

Pr

pr

Mb

 

z The range for the pointer value is 0 to 16L-1. The Pr value should not be changed by other instructions, as this 
will affect the result of search. If the Pr value exceeds its range, then the pointer error flag "ERR" will be set to 
1, and this instruction will not be carried out. 

L :          5
:     R     20Pr

D/S ERR

EN

FHD

X0 125P.MCMP

:     R      10
:     R        0

Mb

Ma FND

END

 

z In the program at left, the "FHD" input is 0, so starting from a 
position 1 greater than the pointer value at that time (marked 
by *), the instruction will do a search for bits with different 
status (because D/S = 1). When X0 has a transition from 0→
1 three times, the results are shown at right in the diagram 
below. 

 

    Pr    

   4 R20   

 
Ma15 
↓ Ma * Ma0 

↓ 
 Mb15 
↓ Mb * Mb0 

↓ 
R0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 R10 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 
R1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
R2 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 R12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
R3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
R4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 
↑ 
Ma79  ↑ 

Ma64  
↑ 
Mb79  

↑ 
Mb64 

 

Before execution  

 

c
 

d
 

e

9-101 
 P r  
 

FND 

 

EN
 

D 
R2 0  39  1 0 

 Pr  
 

FND 
 

END 
R2 0  79  0  1 

 Pr  
 

FND 
 

END 
R2 0  2   1  0 
Execution result 



Matrix instructions 

FUN126  
MBRD 

MATRIX BIT READ 
FUN126  

MBRD 

PrINC

CLR

L

:

:
Ms

126P.MBRD

EN :

ERR

END

OTB

Pointer increment

Readout control

Pointer clear

Output bit

Read to end

Pointer error

 

Ms : Starting register of matrix 

L  : Matrix length 

Pr : Pointer register 

Ms may combine with V, Z to serve indirect 
address application 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C199 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

2 
∣ 

256 

V 
、 
Z 

Ms ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  ○ 
L       ○    ○* ○ ○  
Pr  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○   

z When readout control "EN" = 1 or "EN↑" (  instruction) has a 
transition from 0 to 1, the status of the bit Mspr pointed by 
pointer Pr within matrix Ms will be read out and appear at the 
output bit "OTB". Before the readout, this instruction will first 
check the input -pointer clear "CLR". If "CLR" is 1, then the Pr 
value will be cleared to 0 first before the readout action is carried 
out. After the readout is completed, If the Pr value has already 
reached 16L-1 (the final bit), then the read-to-end flag "END" will 
be set to 1. If Pr is less than 16L-1, then the status of pointer 
increment "INC" will be checked. If "INC" is 1, then Pr will be 
increased by 1. Besides this, pointer clear "CLR" can execute 
independently, and is not affected by other input. 

Ms

L

0TB

Pr

Mspr

 

 

z The effective range of the pointer is 0 to 16L-1. Beyond this range the pointer error flag "ERR" will be set to 1, 
and this instruction will not be carried out. 

X0

:     R      20INC Pr

126P.MBRD

:               5
:     R        0EN Ms

L
END

ERR

OTB

CLR

 

z In the program at left, INC = 1, so every time there is 
one readout the pointer will be increased by 1. With this 
way each bit in Ms may be read out successively, as 
shown at left in the diagram below. When X0 goes 3 
times from 0→1, the results are shown at right in the 
diagram below . 

 
 Pr 

 
Ms15 
↓ Ms Ms0 

↓ R20 77 
R0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1   
R1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1  OTB 
R2 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1   0  
R3 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1   
R4 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0   

 
↑ ↑ 
Ms79  Ms77  ↑ 

Ms64 
 

 
 

Before execution 

c  

d  

e  

 
 

9-102 
  P r  
 
OTB 

 
END 

R2 0  78  1  0 
  Pr  

 
OTB 

 
END 

R2 0  79  0  0 
  Pr  

 
OTB 

 
END 

R2 0  79  1  1 
Execution result 



Matrix instructions 

FUN127  
MBWR 

MATRIX BIT WRITE 
FUN127  

MBWR 

END:EN Md

:

:

CLR

INB

INC

L

Pr ERR

127P.MBWR

pointer increment

Write control

Pointer clear

Write−in bit

Write to end

Pointer error

 

Md : Starting register of matrix 

L  : Matrix length 

Pr : Pointer register 

Md may combine with V, Z to serve indirect 
address application 

 
WY WM WS TMR CTR HR OR SR ROR DR K XR Range 

Ope- 
rand 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

2 
∣ 

256 

V 
、 
Z 

Md ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  ○ 
L      ○   ○* ○ ○  
Pr ○ ○ ○ ○ ○ ○ ○ ○* ○* ○   

 

z When write control "EN" = 1 or "EN↑" (  instruction) has a 
transition from 0 to 1, the status of the write-in bit "INB" will be 
written into the bit Mdpr pointed by pointer Pr within matrix Md. 
Before the write-in takes place, the status of pointer clear "CLR" 
will be checked. If "CLR" is 1, then Pr will be cleared to 0 before 
the write-in action. After the write-in action has been completed, 
the Pr value will be checked again. If the Pr value has already 
reached 16L-1 (last bit), then the write-to-end flag will be set to 
1. If the Pr value is less than 16L-1 and  "INC" is 1, then the 
pointer will increased by 1. Besides this, pointer clear "CLR" can 
execute independently, and is not affected by other input. 

INB

Md

L

Pr

Mdpr

 

z The effective range of Pr is 0 to 16L-1. Beyond this range, the pointer error flag "ERR" will be set to 1, and 
this instruction will not be carried out. 

X1 L :               5

CLR

INB

INC

:     R      20Pr

EN
X0

:     R        0

127P.MBWR

Md

ERR

END

 

z In the program at left, pointer will be increased each time 
execution (because "INC" is 1). As shown in the diagram 
below, when X0 has a transition from 0→1, the status of 
INB (X1) will be written into the Mdpr (Md78) position, and 
pointer Pr will increased by 1 (changing to 79). In this 
case, although Pr is pointing to the end, it has not yet 
been written into Md79, so "END" flag is still 0. Only the 
next attempt to write to Md79 will set “END” to 1.  

 
 X1  Pr    Pr  EN  

  1  R20 78   R20 79  0  

 
Md15 
↓ Md Md0 

↓  Md15 
↓ Md Md0 

↓ 
R0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
R1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
R2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
R4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
↑ 
Md79  ↑ 

Md64 

X0=  

Ö 

 
↑ 
Md79  

↑ 
Md64 

 

Before execution  After execution 

9-103 



Matrix instructions 

FUN128  
MBSHF 

MATRIX BIT SHIFT 
FUN128  

MBSHF 

128P.MBSHF

:

:

:

L/R

L

EN

Md

Ms OTB

INB

Left/Right direction

Shift control

Fill−in bit

Shift out bit

 

Ms : Starting register of source matrix 
Md : Starting register of destination 

matrix 
L  : Length of matrix (Ms and Md) 
Ms, Md may combine with V, Z to serve 
indirect address application 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

2 
∣ 

256 

V 
、 
Z 

Ms ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  ○ 
Md  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  ○ 
L           ○* ○ ○  

 
Ms

L/R=1

0TB

Md

L

INB

Shift 
left 
1 bit

 

z When shift control "EN" = 1 or "EN↑" (  instruction) has a 
transition from 0 to 1, source matrix Ms will be retrieved and 
completely shifted one position to the left (when L/R = 1) or one 
position to the right (when L/R = 0). The space caused by the 
shift (with a left shift it will be M0, and with a right shift it will be 
M16L-1), is replaced by the status of fill-in bit "INB". The status of 
the bits popped out (with a left shift it will be M16L-1, and with a 
right shift it will be M0) will appear at the output bit "OTB". Then 
the results of this shifted matrix will be filled into the destination 
matrix Md. 

Ms
L/R=0 0TB

Md

L

INB

Shift
right 
1 bit 

 

 

z The program at left is an example where Ms and Md 
are the same matrix. When X0 goes from 0→1, Ms will 
be completely retrieved and moved to the left (because 
L/R = 1) by 1 bit. It will then be stored back to Md, and 
the results are shown at right in the diagram below. 

:     R        0

:               5

:     R        0

EN
X0

L

Ms

Md

OTB

L/R

X0

128P.MBSHF

INB

X1 

 1   
OTB 

 0    

 
Ms15 
↓ Ms Ms0 

↓ 
 Md15 
↓ Md 

Md0 
↓ 

R0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
R1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 
R2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 R2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 
R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
R4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

 
↑ 
Ms79  ↑ 

Ms64 

X0=  

Ö 

 
↑ 
Md79  

↑ 
Md64 

 

Before execution  After execution 
 

9-104 



Matrix instructions 

FUN129  
MBROT 

MATRIX BIT ROTATE 
FUN129  

MBROT 

129P.MBROT

:

:

:

L/R L

EN

Md

Ms OTBRotate control

Left/Right direction

Rotated−out bit

 

Ms : Starting register of source matrix 
Md : Starting register of destination matrix 
L  : Length of matrix (Ms and Md) 
Ms, Md may combine with V, Z to serve 
indirect address application 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

2 
∣ 

256 

V 
、 
Z 

Ms ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  ○ 
Md  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○  ○ 
L           ○* ○ ○  

 

Ms
L/R=1

0TB

Md

L

Rotate 
left 
1 bit

 

z When rotate control "EN" = 1 or "EN↑" (  instruction) has a 
transition from 0 to 1, matrix Ms will be completely retrieved and 
rotated by one bit towards the left (when L/R = 1) or to the right 
(when L/R = 0). The space created by the rotation (with a left 
rotation it will be M0, and with a right rotation it will be M16L-1) will 
be replaced by the status of the rotated-out bit (with a left 
rotation it will be M16L-1, and with a right rotation it will be M0). 
The rotated-out bit will not only be used to fill the 
above-mentioned space, it will also be transferred to rotated-out 
bit "OTB". 

Ms
L/R=0 0TB

Md

L

Rotate 
right 
1 bit

 

 

z In the program at left, Ms and Md are the same matrix. 
When X0 goes from 0→1, then the whole of Ms is 
retrieved and rotated right (because L/R = 0) by 1 bit. It is 
then stored back into Ms itself (because in this example 
Ms and Md are the same matrix). The results are shown 
at right in the diagram below. 

129P.MBROT

:     R        0

:               5

:     R        0

EN

L/R

X0

L

Ms

Md

OTB

 

 
Ms15 
↓ Ms Ms0 

↓ 
 Md15 
↓ Md 

Md0 
↓ 

R0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
R1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
R2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 R2 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 
R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
R4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 
↑ 
Ms79  ↑ 

Ms64 

X0=  

Ö 

 
↑ 
Md79  

↑ 
Md64 

OTB 

 0   

 

Before execution  After execution  
 

9-105 



Matrix instructions 

FUN130  
MBCNT 

MATRIX BIT STATUS COUNT 
FUN130  

MBCNT 

:
:

:

130P.MBCNT

D

Ms

L

D=0

1/0

ENCount control

1 or 0 option

Result is 0

 

Ms : Starting register of matrix 

L  : Matrix length 

D  : Register storing count results  

Ms may combine with V, Z to serve indirect 
address application 

 
WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR Range 

Ope- 
rand 

WX0 
∣ 

WX240 

WY0 
∣ 

WY240 

WM0 
∣ 

WM1896 

WS0 
∣ 

WS984 

T0 
∣ 

T255 

C0 
∣ 

C255 

R0 
∣ 

R3839 

R3840 
∣ 

R3903 

R3904 
∣ 

R3967 

R3968 
∣ 

R4167 

R5000 
∣ 

R8071 

D0 
∣ 

D3071 

2 
∣ 

256 

V 
、 
Z 

Ms ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○  ○ 
L       ○    ○* ○ ○  
D  ○ ○ ○ ○ ○ ○  ○ ○* ○* ○   

 

z When count control "EN" = 1 or "EN↑" (  instruction) has a transition from 0 to 1, then among the 16L bits 
of the Ms matrix, this instruction will count the total amount of bits with a status of 1  (when input "1/0" = 1) 
or the total amount of bits with a status of 0 (when input "1/0" = 0). The results of the counting will be stored 
into the register specified by D. If the value of these amounts is 0, then the Result-is-0 flag "D = 0" will be set 
to 1. 

:                5
:     R        0EN

X1

X0

L

D

Ms

1/0

D=0
130P.MBCNT

:     R        0
 

z The program at left sets X1 first as 0 (to count bits with 
status of 0) and then as 1 (to count bits with status of 1) 
and let the signal X0 has a transition from 0→1 for both 
case, the execution results are shown at right in the 
diagram below . 

 

 
Ms15 
↓ Ms Ms0 

↓ 
 D d  D 

R0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
R1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R20 64 R20 16 
R2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1     
R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
R4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  X1=0  X1=1 

 
↑ 
Ms79  ↑ 

Ms64 

X0=  

Ö 

c 

  

 

 
 

Source matrix  Count of ‘0’ bit Count of ‘1’ bit  

9-106 



NC position instructions 

FUN140 
HSPSO 

HIGH SPEED PULSE OUTPUT INSTRUCTION 
 (Brief description on function) 

FUN140 
HSPSO 

WR

ABT

PAU :
SR
Ps
140.HSPSO

EN :
:::

ERR

DN

ACT

Pause

Abort

Execution control

 

Ps : The Pulse Output (0〜3) selection 
0:Y0 & Y1 
1:Y2 & Y3 
2:Y4 & Y5 
3:Y6 & Y7 

SR : Positioning program starting register. 
WR : Starting working register of instruction operation, 

total 7 registers, can not used in any other part of 
program. 

 

HR DR ROR K Range 

Ope- 
rand 

R0 
∣ 

R3839 

D0 
∣ 

D3071 

R5000 
∣ 

R8071 

2 
∣ 

256 

Ps    0〜3 
SR ○ ○ ○  
WR ○ ○ ○*  

 
Command descriptions  
z The NC positioning program of HSPSO (FUN140) instruction is a program written and edited with text. The 

executing unit of program is divided by step (which includes output frequency, traveling distance, and 
transferring conditions). For one FUN140 instruction, can program 250 steps of positioning points at the most. 
Each step of positioning program requires 9 registers. For detailed application, please refer to chapter 14 “the 
NC positioning control of FB-PLC”. 

z The benefits of storing the positioning program in the register is that, while in application which use the MMI 
(man machine interface) as the operation console can save the positioning programs to MMI. Whenever the 
change of the positioning programs is requested, the download of positioning program can be simply done by 
a series of write register commands. 

z The NC positioning of this instruction doesn’t provide the linear interpolation function. 
z When execution control “EN”=1, if Ps0〜3 is not controlled by other FUN140 instruction (the status of 

Ps0=M1992, Ps1=M1993, Ps2=M1994, and Ps3=M1995 is ON respectively), it will start to execute from the 
next step of positioning point (when goes to the last step, it will be restarted from the first step); if Ps0〜3 is 
controlled by other FUN140 instruction (the status of Ps0=M1992, Ps1=M1993, Ps2=M1994, and 
Ps3=M1995 are OFF), this instruction will wait and acquires the control right of output point immediately right 
after other FUN140 release the output. 

z When execution control input “EN” =0, it stops the pulse output immediately. 
z When output pause “PAU” =1 and execution control was 1, it will pause the pulse output.  When output 

pause “PAU” =0 and execution control is still 1, it will continue the unfinished pulse output. 
z When output abort “ABT”=1, it will halt and stop pulse output immediately.  (When the execution control 

input “EN” becomes 1 next time, it will restart from the first step of positioning point to execute.) 
z While send the output pulse, the output indication “ACT” is ON. 
z When there is an execution error, the output indication “ERR” will be ON.  (The error code is stored in the 

error code register.) 
z When the execution of each step of positioning program is completed, the output indication “DN” will be ON. 

***  The working mode of Pulse Output must be configured (without setting, Y0〜Y7 will be treated as normal 
output) to any one of following modes, before the HSPSO instruction can be worked. 

U/D Mode: Y0 (Y2, Y4, Y6), as up pulse. 
Y1 (Y3, Y5, Y7), as down pulse. 

K/R Mode: Y0 (Y2, Y4, Y6), as the pulse out. 
Y1 (Y3, Y5, Y7), as the direction. 

A/B Mode: Y0 (Y2, Y4, Y6), as A phase pulse. 
Y1 (Y3, Y5, Y7), as B phase pulse. 

hThe output polarity for Pulse Output can select to be Normally ON or Normally OFF. 
hThe working mode of Pulse Output can be configured by PROLADDER in “HSC” setting page. 

9-107 



NC position instructions 

FUN141 
MPARA 

NC POSITIONING PARAMETER VALUE SETTING 
(Brief description on function) 

FUN141 
MPARA 

141.MPARA

: EN
SR: 

ERRPs

 

Ps : The pulse output (0〜3) selection 

SR : Starting register for parameter table; it has 18 
parameters totally, and occupy 24 registers. 

 
 

HR DR ROR K Range 

Ope- 
rand 

R0 
∣ 

R3839 

D0 
∣ 

D3071 

R5000 
∣ 

R8071 

2 
∣ 

256 

Ps    0〜3 
SR ○ ○ ○  

 
 
 

Operation descriptions  

hIt is not necessary to use this instruction. if the system default for parameter values is matching what user 
demanded, then this instruction is not needed. However, if it needs to change the parameter value 
dynamically, this instruction is required. 

hThis instruction incorporates with FUN140 for positioning control purpose. 

hWhether the execution control input “EN” = 0 or 1, this instruction will be performed. 

hWhen there are any errors in parameter value, the output indication “ERR” will be ON.  (The error code is 
stored in the error code register.) 

hFor detailed functional description and usage, please refer to chapter 14 “The NC positioning control of 
FB-PLC” for explanation. 

 

 

 

 

 

 

 

 

 

 

9-108 



NC position instructions 

FUN142  
PSOFF 

STOP THE HSPSO PULSE OUTPUT 
(Brief description on function) 

FUN142  
PSOFF 

142.P
PSOFFEN PsExecution control

 

Ps : 0〜3 
Enforce the Pulse Output PSOn (n= Ps) to stop. 
 

Command descriptions  

z When execution control “EN” =1 or “EN↑” (  instruction) changes from 0→1, this instruction will enforce 
the assigned number set of HSPSO (High Speed Pulse Output) to stop pulse output. 

z While in the application for mechanical original point reset, as soon as reach the original point can use this 
instruction to stop the pulse output immediately, so as to make the original point stop at the same position 
every time when performing mechanical original point resetting. 

z For detailed functional description and usage, please refer to chapter 14 “The NC positioning control of 
FB-PLC” for explanation. 

 

 

 

 

 

 

 

 

 

9-109 



NC position instructions 

FUN143  
PSCNV 

CONVERT THE CURRENT PULSE VALUE TO DISPLAY VALUE 
 (mm, Deg, Inch, PS)    (Brief description on function) 

FUN143  
PSCNV 

143P.PSCNV
PsEN :
D :

Execution control

 

Ps : 0〜3; it converts the number of the pulse position to be 
the mm (Deg, Inch, PS) that has same unit as the set 
value, so as to make current position displayed. 

D : Register that stores the current position after 
conversion. It uses 2 registers, e.g. if D = D10, which 
means D10 is Low Word and D11 is High Word.  

 
 

HR DR ROR K Range 

Ope- 
rand 

R0 
∣ 

R3839 

D0 
∣ 

D3071 

R5000 
∣ 

R8071 

2 
∣ 

256 

Ps    0 〜3 
D ○ ○ ○  

 
Command descriptions  

z When execution control “En” =1 or “EN↑”(  instruction) changes from 0→1, this instruction will convert 
the assigned current pulse position (PS) to be the mm (or Deg, Inch, or PS) that has same unit as the set 
value, so as to make current position displaying. 

z Only when the FUN140 instruction is executed, then it can get the correct conversion value by executing 
this instruction. 

z For detailed functional description and usage, please refer to chapter 14 “The NC positioning control of 
FB-PLC” for explanation. 

9-110 



Interrupt control instructions 

FUN145  
EN 

ENABLE CONTROL OF THE INTERRUPT AND PERIPHERAL  
FUN145  

EN 

145.P
ENEN LBLEnable control

 

LBL : External input or peripheral label name that to be 
enabled.  

z When enable control “EN” =1 or “EN↑” (  instruction) changes from 0→1, it allows the external input or 
peripheral interrupt action which is assigned by LBL. 

z The enabled interrupt label name is as follows:(Please refer the section 10.3 for details) 

LBL name Description LBL name Description  LBL name Description  

HSTAI 
HSTA High speed 
counter interrupt  X4+I  X4 positive edge 

interrupt X10+I  X10 positive edge 
interrupt 

HSC0I 
HSC0 High speed 
counter interrupt X4− I  X5 negative edge 

interrupt X10− I  X10 negative edge 
interrupt 

HSC1I 
HSC1 High speed 
counter interrupt X5+I  X5 positive edge 

interrupt X11+I  X11 positive edge 
interrupt 

HSC2I 
HSC2 High speed 
counter interrupt X5− I  X5 negative edge 

interrupt X11− I  X11 negative edge 
interrupt 

HSC3I 
HSC3 High speed 
counter interrupt X6+I  X6 positive edge 

interrupt X12+I  X12 positive edge 
interrupt 

X0+I  
X0 positive edge 
interrupt X6− I  X6 negative edge 

interrupt X12− I  X12 negative edge 
interrupt 

X0− I  
X0 negative edge 
interrupt X7+I  X7 positive edge 

interrupt X13+I  X13 positive edge 
interrupt 

X1+I  
X1 positive edge 
interrupt X7− I  X7 negative edge 

interrupt X13− I  X13 negative edge 
interrupt 

X1− I  
X1 negative edge 
interrupt X8+I  X8 positive edge 

interrupt X14+I  X14 positive edge 
interrupt 

X2+I  
X2 positive edge 
interrupt X8− I  X8 negative edge 

interrupt X14− I  X14 negative edge 
interrupt 

X2− I  
X2 negative edge 
interrupt X9+I  X9 positive edge 

interrupt X15+I  X15 positive edge 
interrupt 

X3+I  
X3 positive edge 
interrupt X9− I  X9 negative edge 

interrupt X15− I  X15 negative edge 
interrupt 

X3− I  
X3 negative edge 
interrupt     

z In practical application, some interrupt signals should not be allowed to work at sometimes, however, it should 
be allowed to work at some other times.  Employing FUN146 (DIS) and FUN145 (EN) instructions could 
attain the above mentioned demand. 

 Program example  

145.PM0
EN X0+IEN

 

z When M0 changes from 0→1, it allows X0 to send 
interrupt when X0 changes from 0→1.  CPU can rapidly 
process the interrupt service program of X0+I. 

 
 

9-111 



Interrupt control instructions 

FUN146  
DIS 

DISABLE CONTROL OF THE INTERRUPT AND PERIPHERAL 
FUN146  

DIS 

146.P

EN LBLDIS

 

LBL : Interrupt label intended to disable or peripheral name to 
be disabled. 

z When prohibit control “EN” =1 or “EN↑” (  instruction) changes from 0→1, it disable the interrupt or 
peripherial operation designated by LBL.  

z The interrupt label name is as follows:  

LBL name Description LBL name Description  LBL name Description  

HSTAI HSTA High speed 
counter interrupt X4+I  X4 positive edge 

interrupt X10+I  X10 positive edge 
interrupt 

HSC0I HSC0 High speed 
counter interrupt X4− I  X5 negative edge 

interrupt X10− I  X10 negative edge 
interrupt 

HSC1I HSC1 High speed 
counter interrupt X5+I  X5 positive edge 

interrupt X11+I  X11 positive edge 
interrupt 

HSC2I HSC2 High speed 
counter interrupt X5− I  X5 negative edge 

interrupt X11− I  X11 negative edge 
interrupt 

HSC3I HSC3 High speed 
counter interrupt X6+I  X6 positive edge 

interrupt X12+I  X12 positive edge 
interrupt 

X0+I  X0 positive edge 
interrupt X6− I  X6 negative edge 

interrupt X12− I  X12 negative edge 
interrupt 

X0− I  X0 negative edge 
interrupt X7+I  X7 positive edge 

interrupt X13+I  X13 positive edge 
interrupt 

X1+I  X1 positive edge 
interrupt X7− I  X7 negative edge 

interrupt X13− I  X13 negative edge 
interrupt 

X1− I  X1 negative edge 
interrupt X8+I  X8 positive edge 

interrupt X14+I  X14 positive edge 
interrupt 

X2+I  X2 positive edge 
interrupt X8− I  X8 negative edge 

interrupt X14− I  X14 negative edge 
interrupt 

X2− I  X2 negative edge 
interrupt X9+I  X9 positive edge 

interrupt X15+I  X15 positive edge 
interrupt 

X3+I  X3 positive edge 
interrupt X9− I  X9 negative edge 

interrupt X15− I  X15 negative edge 
interrupt 

X3− I  X3 negative edge 
interrupt     

z In practical application, some interrupt signals should not be allowed to work at certain situation. To achive 
this, this instruction may be used to disable the interrupt signal. 

 

 Program example  

 
146.PM0

EN X2+IDIS
 

z When M0 changes from 0→1, it prohibits X2 from 
sending interrupt when X2 changes from 0→1. 

 

9-112 


	Arithmetical operation instructions
	FUN 23 DIV48
	FUN 24 SUM
	FUN 25 MEAN
	FUN 26 SQRT
	FUN 27 NEG
	FUN 28 ABS
	FUN 29 EXT
	FUN 30 PID

	Logical operation instruction
	FUN 35 XOR
	FUN 36 XNR

	Comparison instructions
	FUN 37 ZNCMP

	Data movement instructions
	FUN 40 BITRD
	FUN 41 BITWR
	FUN 42 BITMV
	FUN 43 NBMV
	FUN 44 BYMV
	FUN 45 XCHG
	FUN 46 SWAP
	FUN 47 UNIT
	FUN 48 DIST

	Shifting/Rotating instructions
	FUN 51 SHFL
	FUN 52 SHFR
	FUN 53 ROTL
	FUN 54 ROTR

	Code conversion instructions
	FUN 57 DECOD
	FUN 58 ENCOD
	FUN 59 7SG
	FUN 60 ASC
	FUN 61 SEC
	FUN 62 HMS
	FUN 63 HEX
	FUN 64 ASCII

	Flow control instructions
	END
	FUN 65 LBL
	FUN 66 JMP
	FUN 67 CALL
	FUN 68 RTS
	FUN 69 RTI
	FUN 70 FOR
	FUN 71 NEXT

	Temperature control instructions 1
	FUN 72 TP4
	FUN 73 TSTC

	I/O instructions
	FUN 74 IMDIO
	FUN 75 FILT
	FUN 76 TKEY
	FUN 77 HKEY
	FUN 78 DSW
	FUN 79 7SGDL
	FUN 80 MUXI
	FUN 81 PLSO
	FUN 82 PWM
	FUN 83 SPD
	FUN 84 7SGMO

	Temperature control instructions 2
	FUN 85 TPSNS
	FUN 86 TPCTL

	Cumulative timer instructions
	FUN87 T.01S
	FUN88 T.1S
	FUN89 T1S

	Watchdog timer instructions
	FUN 90 WDT
	FUN 91 RSWDT

	High speed counting/timing instructions
	FUN 92 HSCTR
	FUN 93 HSCTW

	Report printing instructions
	FUN 94 ASCWR

	Slow up/Slow down instructions
	FUN 95 RAMP

	Communication instructions
	FUN 96 LINK2
	FUN 97 LINK1

	Table instructions
	FUN100

R→T
	FUN101

T→R
	FUN102

T→T
	FUN103 BT_M
	FUN104 T_SWP
	FUN105 R-T_S
	FUN106 T-T_C
	FUN107 T_FIL
	FUN108 T_SHF
	FUN109 T_ROT
	FUN110 QUEUE
	FUN111 STACK
	FUN112 BKCMP
	FUN113 SORT

	Matrix instructions
	FUN120 MAND
	FUN121 MOR
	FUN122 MXOR
	FUN123 MXNR
	FUN124 MINV
	FUN125 MCMP
	FUN126 MBRD
	FUN127 MBWR
	FUN128 MBSHF
	FUN129 MBROT
	FUN130 MBCNT

	NC position instructions
	FUN140 HSPSO
	FUN141 MPARA
	FUN142 PSOFF
	FUN143 PSCNV

	Interrupt control instructions
	FUN145 EN
	FUN146 DIS




