Chapter 9 Advanced Application Instructions

® Arithmetical operation instructions
® | ogical operation instructions

® Comparison instructions

® Data movement instructions

® Shifting/Rotating instructions

® Code conversion instructions

® Flow control instructions

® Temperature control instructions 1
® |/O instructions

® Temperature control instructions 2
® Cumulative timer instructions

® Watchdog timer instructions

® High speed counting/timing instructions
® Report printing instructions

® Slow up/Slow down instructions

® Communication instructions

® Table instructions

® Matrix instructions

® NC position instructions

® Interrupt control instructions

(FUN23~30) -weeeeeesmeesnmennnnens 9-2 ~
(FUN35~36) «eeeeeeeesmmesinnaninnnns 9-10 ~
(FUNB7) eeeeemeesmemsnieniinns 9-12

(FUN4O~A48) «eeervresmmesninnnnns 9-13 ~
(FUNBT~B4) ceeerveesnnesninnnens 9-22 ~
(FUNB7 ~B4) weeereeeesmeesinnnnnanns 9-26 ~
(FUNBB~T1) weeveeermeesmmeseenenne 9-39 ~
(FUNT2~T73) weeeeeeereeseeseennenns 9-47 ~
(FUNTA~8A) weevveereeesmeeseennann 9-49 ~
(FUNBB~8B) «reevreersrresneesinnans 9-63 ~
(FUNB7~89) «reervreersmresinnannnns 9-65 ~
(FUNQO~Q1) wreerereessmresnnnnnnns 9-67 ~
(FUNQ2~93) «reereeresmresnnannnns 9-69 ~
(FUND4) eveermemsminiinniinins 9-71 ~
(FUNOB) -eeeeermeesmeesiinniieiis 9-73 ~
(FUNOB~Q7) weeereversmeesnnnnnans 9-75 ~
(FUNTOO~113) weereeerreeseeneenne 9-77 ~
(FUN120~130) weeeeerreesmeemeenes 9-95 ~
(FUNT40~143) weoeeeeemmmeennenne 9-107 ~
(FUNT45~146) «ooveeeeremeeneenne 9-111 ~

9-21

9-25

9-38

9-46

9-48

9-62

9-64

9-66

9-68

9-70

9-72

9-74

9-76

9-94

9-106

9-110

9-112

Arithmetical operation instructions

FUN 23 @
DIV48

48-BIT DIVISION

FUN 23 @
DIV48

Operation control-EN T

D=0—Quotient=0

ERR-— Divisor=0

Sa : Starting register of dividend

Sb : Starting register of divisor

D : Starting register for storing the division result

(quotient)

Sa > Sb > can combine V,Z for index addressing.

Range | HR | OR | SR |[ROR| DR | XR
RO |R3904 |R3968|R5000(DO | V

Ope- \ \ \ \ \ :
rand R3839|R3967 |R4167 |R8071|D3071| Z
Sa OJl]O0 O 101010
Sb O]l]O0]lO0O OO0

D OlJ]oJOo O] OO

registers.

Example: 48-bit division

Sb: R
D: R

Rz | Rt |

Sa
2147483647

RE | RrRe | Rs

Sb
1234567
R& | R | Re
1739
Quotient

® When operation control “EN"=1 or “EN 1 ” (I instruction) changes from 0—1, will perform the 42 bits division
operation. Dividend and divisor are each formed by three consecutive registers starting by Sa and Sb
respectively. If the result is zero, ‘D=0’ output will be set to 1. If divisor is zero then the ‘ERR’ will be set to 1
and the resultant register will keep unchanged.

® All operands involved in this function are all 42 bits, so Sa, Sb and D are all comprised by 3 consecutive

In this example dividend formed by register R2, R1, RO will be divided by divisor formed by register R5, R4, R3. The
quotient will store in R8, R7, and R6.

9-2

Arithmetical operation instructions

FUN24 DI SUM FUN 24 D4
SUM (Summation of block data) SUM

S : Starting number of source register

N : Number of registers to be summed

Operation control-EN (successive N data units starting from S)

D : The register which stored the result (summation)

S, N, D, can associate with V, Z index register to serve the
indirect addressing application.

Range| WX | WY WM WS |TMR|CTR| HR | IR | OR | SR [ROR| DR | K | XR
WX0 | WYO | WMO | WSO | TO | CO | RO |R3840|R3904|R3968|R5000| DO | 1 | v

Ope- \ \ \ \ \ \ \ \ \ \ \ \ \)
rand WX240 | WY240 | WM1896 | WS984 | T255 | C255 |R3839|R3903 | R3967 |R4167 |R8071|D3071| 511 | Z
S ®) O O ©) O]l]lO0O]O O]O0O]0O0]10]O0 @)

N ©) O O ©) O]l]O]O0O]O]O]O0O]O0O]1]0O0]0]O0

D O ©) ©) OO0 0O OO 1O] 0O ©)

® When operation control “EN"=1 or “EN 1 ” (I instruction) changes from 0—1, it puts the successive N units of
16bit or 32 bit (I instruction) registers for addition calculation to get the summation, and stores the result into
the register which is designated by D.

® When the value of N is O or greater than 511, the operation will not be performed.

® Communication port1 or port2 can be used to serve as a general purpose ASCIl communication interface. If
the data error detecting method is Check-Sum, this instruction can be used to generate the sum value for
sending data or ot use this instruction to check if the received data is error or not.

(Example 1) When M1 changes from OFF—ON, following instruction will calculates the summation for 16-bit data.

M1 ® The left illustrates that 6 16-bit registers starting from RO
FENT is calculated for summation, and the result is stored into
the R100 register.
R0=0030H
R1=0031H
R2=0032H
> R100=012FH
R3=0033H
R4=0034H
R5=0035H

(Example 2) When M1 is ON, it calculates the summation for 32-bit data.

M1
T—{ —EN

R1 > R0=00310030H
R3 » R2=00330032H > R101 » R100=00A5009BH
R5 > R4=00410039H

24D.SUM ——
S: RO
N: 3
D: R100

® The left illustrates that three 32-bit registers starting from
DRO, is calculated for their summation, and the result is
stored into the DR100 register.

9-3

Arithmetical operation instructions

FUN25 D4 MEAN FUN25 DY
MEAN (Average of the block data) MEAN

S : Source register number

N : Number of registers to be averaged

Operation control-EN" ERR—N range error (N units of successive registers starting from S)

D : Register number for storing result (mean value)

The S, N, D may combine with V, Z to serve indirect
address application

Range| WX | WY WM WS |[TMR|CTR| HR IR OR SR |ROR| DR | K | XR
WX0 | WYO WMO WS0 | TO Cco RO |R3840 [R3904 | R3968 | R5000| DO 2 \%

Ope- .
rarrJ1d WX‘24O WY‘240 WMLBQG WSL)84 T2‘55 02‘55 R3E‘§39 R3S‘)03 R3g67 R4¥67 R8(‘)71 D3(‘J71 2;6 z
S O O O O O] O O O O O O O O

N O O O O O] O O O O O O O O] O

D O O O O] O O O o | O O O

® When operation control "EN" = 1 or "EN 1" (I instruction) from 0 to 1, add the N successive 16-bit or
32-bit (I instruction) numerical values starting from S, and then divided by N. Store this mean value
(rounding off numbers after the decimal point) in the register specified by D.

® While the N value is derived from the content of the register, if the N value is not between 2 and 256, then the
N range error "ERR" will be set to 1, and do not execute the operation.

® At left, the example program gets the mean value of the
3 successive 16-bit registers starting from RO, and stores
the results into the 16-bit register R10

s RO 123
R1 9
(N=3)
R2 788 123+94-788
3
X0=
@ T =306 (Rouding off the remainder)

b | RiO | 306

9-4

Arithmetical operation instructions

FUN 26 MY
SQRT

FUN 26 M4
SQRT

SQUARE ROOT

S : Source register to be taken square root

D : Register for storing result

(square root value)
S, D may combine with V, Z to serve indirect
address application

26DP.SQRT
S:
D:

Operation control -ENT ERR— S range error

Range| WX | WY WM WS | TMR | CTR | HR IR OR | SR | ROR | DR K XR
WX0 | WYO WMO WSO TO Cco RO | R3840 | R3904 | R3968 | R5000 | DO Y

Ope- L | R
rand WX240|WY240|WM1896 | WS984 | T255 | C255 | R3839 | R3903 | R3967 | R4167 | R8071 | D3071 z
s |[olo]loJoJolololololololol oo

D ol olololo]o o |lo oo O

® When operation control "EN" = 1 or "EN 1 " (Id instruction) from 0 to 1, take the square root (rounding off
numbers after the decimal point) of the data specified by the S field, and store the result into the register

specified by D.

® While the S value is derived from the content of the register, if the value is negative, then the S value error
flag "ERR" will be set to 1, and do not execute the operation.

X0

F—ENMS:

26DP.SQRT

2147483647
D: R 0

ERR—

® The instruction at left calculates the square root of the
constant 2147483647, and stores the result in RO.

S | K | 2147483647 |
I xo=T
b| R1T RO | 46340 |
R1 RO

V2147483647 = 4634095
t

rounding off

9-5

Arithmetical operation instructions

FUN 27 MY
NEG

NEGATION
(Take the negative value)

FUN27 D4
NEG

27DP
Operation control ENT{ NEG

N

D : Register to be negated

D may combine with V, Z to serve indirect address

application
Range| WY WM WS |TMR|CTR| HR OR SR [ROR | DR XR
WYO | WMO | WSO | TO | CO | RO |R3904|R3968 |R5000| DO v
Ope- \ \ \ \ \ \ \ \ \ \ :
rand WY240 | WM1896 |WS984 | T255 | C255 | R3839 | R3967 | R4167 | R8071 | D3071| Z
D O O O |O|1O] O O o | O O O

X0

27P

H %Em{ NEG |R

® |[f the value of the content of D is negative, then the negation operation will make it positive.

® When operation control "EN" =1 or "EN 1 " (I instruction) from 0 to 1, negate (ie. calculate 2's complement)
the value of the content of the register specified by D, and store it back in the original D register.

® The instruction at left negates the value of the RO
register, and stores it back to RO.

| " 3039H

D[RO | 12345
dxo=1
D | RO | ~12345

| " crcH

9-6

Arithmetical operation instructions

FUN 28 MY

ABSOLUTE

ABS (Take the absolute value)

FUN 28 MY
ABS

28DP
Operation control EN?{ ABS D

D : Register to be taken absolute value

D may combine with V, Z to serve indirect address

application

Range| WY WM WS

TMR [CTR| HR

OR

SR |ROR | DR | XR

WYO0 WMO WSO0
Ope- \
rand WY240 | WM1896 | WS984

TO Co RO | R3904

T255 |C255| R3839 | R3967

R3968

R4167

R5000| DO \

R8071|D3071| Z

D O O O

O

O*

o1 O 1O

28DP

X0
H %EN?{ABS R 0

® When operation control "EN" = 1 or "EN 1 " (I instruction) from 0 to 1, calculate the absolute value of the
content of the register specified by D, and write it back into the original D register.

® The instruction at left calculates the absolute value of

the RO register, and stores it back in RO.

D [R1 RO -12345 | ¥ cFc7H
dxo=1
D |[R1_RO| 12345 | F3030H

9-7

Arithmetical operation instructions

FUN29 Id FUN29 4
SIGN EXTENSION
EXT EXT
29P D : Register to be taken sign extension
Operation control ~ENT{EXT D D may combine with V, Z to serve indirect address
application

Range| WY WM WS |TMR|CTR| HR | OR | SR |ROR | DR | XR

WYO | WMO | WSO | TO | CO | RO |R3904|R3968 |R5000| DO | V
Ope- \ \ \ \ \ \ \ \ \ \

rand WY240 | WM1896 | WS984 | T255 | C255 | R3839 | R3967 | R4167 | R8071 | D3071 | Z
D ©) ©) ©) O]O0] O OO 1O | OO

® When operation control "EN" = 1 or "EN 1 " (Id instruction) from 0 to 1, this instruction will sign extent the 16
bit numerical value specified by D to 32-bit value and store it into the 32-bit register comprised by the two
successive words, D + 1 and D. (Both values are the same, only it was originally formated as a 16 bit
numerical value, and was then extended to be formated as a 32 bit numerical value.)

® This instruction extent the numerical value of a 16-bit register into an equivalent numerical value in a 32-bit
register (for example 33FFH converts to 000033FFH), Its main function is for numerical operations
(+,-,*,/,CMP......) which can take the 16 bit or 32 bit numerical values as operand. Before operation all the
operand should be adjusted to the same length for proper operation.

® The instruction at left takes a 16 bit numerical value RO,

X0 29pP and extends it to an equivalent value in 32 bits, then
H }*ENT{EXT R 0 stores it into a 32 bit register (DR0=R1R0) comprised RO
and R1
R1 B15 RO BO
D | R1RO Ignore the value of.R1 before 1l1lolol 1l 41 1111 11 1/ ol ol ol 1] 1] 1 12345
extension
U xo=1
B31 R1 B16|B15 RO BO

o [R1Ro [1] 1] 1] a[a[a[a[a[a[a[[4[4[4[4[1] o[of a[s[4[4[4[4[o[o o [[4] 12045

Fill B15 value into B31-B16,(if B15 is 0, then B31-B16 are all 0)

Before extension (16 bits) RO= CFC7H=—12345

The t ical val tually th
After extension (32 bits) R1RO=FFFFCFC7H=— 12345 } © W0 numerical valies are actualy the same

9-8

Arithmetical instructions

FUN 30 General purpose PID operation FUN 30
PID (Brief description) PID
~ 30.PID Ts :PID Operation time interval
Mode —A/M- Ts : +ERR- Setting error . .
SR SR : Starting register of process control
Bumpless —BUM- OR "HA - High alarm parameter table comprised by 8 consecutive
registers.
PR :
Direction —D/R -{ WR : +LA - Low alarm .
OR : PID output register
PR : Starting register of the process parameter
table comprised by 7 consecutive registers.
Range| HR | ROR | DR K WR : Starting register of working variable for PID
a R‘O RS("OO D‘O internal operation. It requires 7 registers and
raﬁ(e; R3839 | R8071 | D3071 can’t be re-used in other part of the ladder
Ts O O O | 1~3000 program.
SR O 1010
OR O 1010
PR O 1010
WR O 1010

® PID function according to the current value of process variable (PV) derived from the external analog signal
and the setting value (SP) of process performs the calculation, which base on the PID formula. The result of
calculation is the control output for the controlled process, which can feed directly to the AO module or other
output interface or leaved for further process. The usage of PID control for process if properly can achieve a
fast and smooth result of PV tracking toward SP change or immune to the disturbance of process.

® The PID formula in digital form:

Mn

Mn

Pb

Ti

Td
PVn
PV n-1
En

Ts

Bias

n

0

[(1000/Pb) x En]+ 2. [(1000/Pb)xTixTsxEn]

: Control output at time "n”
: Proportional band (range : 2~5000, unit 0.1%. Kc (gain) =1000/ Pb)
: Intergal time constant (range : 0~9999 corresponds to 0.00~99.99 Repeats/Minute)

» "

: Process value at time "n

» "

: Process value at time "n

: Differential time constant (range : 0~9999 corresponds to 0.00~99.99 Minutes)

:Error at time "n” =set value (SP) — process value at time "n” (PVn)
: Interval time of PID calculation (range: 1~3000, unit: 0.01 S)
: Control output offset (range: 0~4095)

® For detail description of this function, please refer chapter 21.

[(1000/Pb)xTdx(PVn-PVn-1)/Ts] + Bias

» 9

9-9

Logical operation instruction

XOR

FUN 35 M4

EXCLUSIVE OR

FUN35 MY
XOR

35DP.XOR
Operation control ~-ENTH Sa:

+tD=0— Result as 0

Sa: Source data a for exclusive or operation

Sb: Source data b for exclusive or operation

D : Register storing XOR results

Sb:
D: Sa, Sb, D may combine with V, Z to serve indirect
address application
Range| WX WY WM WS [TMR|CTR| HR IR OR | SR [ROR| DR K XR
WX0 | WYO | WMO | WSO | TO | CO | RO [R3840|R3904|R3968(R5000| DO |16/32bit| V
Ope- \ | \ \ \ \ \ \ \ \ | \ +- .
rand WX240 | WY240 | WM1896 | WS984 | T255 | C255 |R3839 |R3903 |R3967 |R4167 |R8071|D3071 | number | Z
Sa O O O O O] 0] O O O O O O O O
Sb O O O O O]l O] O O O O O O O O
D O O O O]l O] O O |Oo | O | O O

) After the operation, if all the bits in D are all 0, then set the 0 flag "D = 0" to 1.

] When operation control "EN" = 1 or "EN 1 " (Id instruction) changes from 0 to 1, will perform the logical
XOR (exclusive or) operation of data Sa and Sb. The operation of this function is to compare the
corresponding bits of Sa and Sb (B0~B15 or BO~B31), and if bits at the same position have different status,
then set the corresponding bit within D as 1, otherwise as 0.

using the RO and R1 registers, and stores the result

X0 35P.XOR——— ® The instruction at left makes a logical XOR operation
——ENT™Sa: R 0 D=0
Sb: R 1 in R2.
D: R 2
Sa RO [1{0(1|1|1{0[1(1[0|1]|1{0[1[1|0]1
Sb R1T [1{1(1]0|1{1][1[{0[1]0]|1]0|0(1|1]0

dxo=T

p | Rz [o|1]o]1]o]1]o]1]1]1]o]o]1]o]1]1]

9-10

Logical operation instructions

FUN 36 M
XNR

ENCLUSIVE OR

FUN 36 M4
XNR

Operation control-ENTy Sa:

36DP.XNR

+tD=0—result as 0

Sa: Data a for XNR operation

Sb: Data b for XNR operation

Sh: D : Register storing XNR results
D: Sa, Sb, D may combine with V, Z to serve indirect
address application
Range| WX | WY WM WS |TMR|CTR| HR IR OR SR | ROR | DR K XR
WX0 | WYO | WMO | WSO | TO | CO | RO |R3840|R3904 R3968 R5000| DO | san | V
Ope- \ \ \ \ \ \ \ \ \ \ \ [.
rand WX240 | WY240 |WM1896| WS984 | T255 | C255 | R3839 | R3903 | R3967 | R4167 | R8071 | D3071 z
Sa O O O O Ol O] O O O O O O O O
Sb O O O O Ol 0] O O O O O O O O
D O O O Ol 0] O O 1O | O | O O

@ When operation control "EN" = 1 or "EN 1 " (I instruction) changes from 0 to 1, will perform the logical
XNR (inclusive or) operation of data Sa and Sb. The operation of this function is to compare the
corresponding bits of Sa and Sb (BO~B15 or B1~B31), and if the bit has the same value, then set the

corresponding bit within D as 1. If not then set it to 0.

@ After the operation, if the bits in D are all 0, then set the 0 flag "D=0" to 1.

X0

—ENT™Sa: R 0

36P.XNR—— ® The instruction at left makes a logical XNR operation
FD=0— of the RO and R1 registers, and the results are stored
Sb: R 1 in the R2 register.
D: R 2
Sa | RO |[1]0|1[1]1]0[1|1]0]1[1]0[1[1]|0]|1
Sb | R1T |1]1]1]0]1]1[1]0]1]0[1]0]0|1[1]|0
dxo=T

p | Rre [1]o]1]o]1]o]1]o]o]o]1]1]0]1]0]0]

9-11

Comparison instructions

FUN37 D4 FUN 37 D
ZONE COMPARE
ZNCMP ZNCMP
37DP.ZNCMP S : Register for zone comparison
Operation control-EN™ S : -INZ — Inside zone Su: The upper limit value
Su: : ... SL:The lower limit value
Sy ~S>U— Higher than upper limit
S, Su, SL may combine with V, Z to
LS<L.— Lower than lower limit serve indirect address application
FERR— Limit value error
Range| WX WYy WM WS |TMR|CTR| HR IR | OR [SR [ROR| DR K XR
WX0 | WYO | WMO | WSO | TO | CO | RO |R3840|R3904|R3968|R5000| DO |16/32-bit| v
Ope- \ \ \ \ \ \ \ \ \ | | \ +-)
rand WX240 | WY240 | WM1896 | WS984 | T255 | C255 |R3839|R3903 |R3967 |R4167 |R8071|D3071| number | Z
S O O O O OOl OO]0O0]0O]0]O0O O
Su O O O O OOl OO]0O0]0O]0O0]O O O
SL O O O O OOl O] O]0O0]0O]0O0]O0O O O

] When operation control "EN" = 1 or "EN 1 " (I instruction) changes from 0 to 1, compares S with upper
limit Su and lower limit SL. If S is between the upper limit and the lower limit (S =S =<Sy), then set the
inside zone flag "INZ" to 1. If the value of S is greater than the upper limit Su, then set the higher than
upper limit flag "S>U" to 1. If the value of S is smaller then the lower limit St, then set the lower than lower
limit flag "S<L"as 1.

L] The upper limit Sy should be greater than the lower limit S.. If Sy<S,, then the limit value error flag "ERR"
will set to 1, and this instruction will not carry out.

X0 -37P.ZNCMP——— Yo
| —ENMS : R 0 [ANZ—)
Su: R 1

s.: R 2 [SU-
FS<L—
'ERR—
S RO 200
Su R1 300
SL
R2 100

Before-execution

® The instruction at left compares the value of RO with the
upper and lower limit zones formed by R1 and R2. If the
values of RO~R2 are as shown in the diagram at bottom

left, then the result can then be obtained as at the right

of this diagram.

® If want to get the status of out side the zone, then OUT
NOT YO may be used, or an OR operation between the
two outputs S>U and S<L may be carried out, and
move the result to YO.

(Upper limit value)

(Lower limit value)

X0=T

&

YO

—

Results of execution

9-1

2

Data movement instructions

FUN 40 DI & BIT READ FUN 40 D&
BITRD BITRD
S : Source data to be read
40DP.BITRD——
Operation control ENT S : LOTB— Output bit N : The bit number of the S data to be read out.

N: S, N may combine with V, Z to serve indirect
FERR—N value error address application
Range| WX Wy WM WS | TMR | CTR | HR IR OR SR |ROR | DR K XR
WX0 | WYO | WMO | WSO | TO co RO |R3840|R3904 |R3968 R5000| DO | (oims i | V
-bit

Ope- | \ \ \ | \ \ \ \ \ \ I s number | -
rand WX240 |WY240| WM1896 | WS984 | T255 | C255 |R3839 | R3903 | R3967 | R4167 | R8071|D3071 z
S O O O O O O O O O O O O O O
N O O O O O O O O O O O O 0~31 O

) When read control "EN" = 1 or "EN 1 " (I instruction) changes from 0 to 1, take the Nth bit of the S data
out, and put it to the output bit "OTB".

] When read control "EN" = 0 or "EN 1 " (I instruction) is not change from 0 to 1, The output “OTB” can be

selected to keep at the last state(if M1919=0) or set to zero (if M1919=1).

] When the operand is 16 bit, the effective range for N is 0~15. For 32 bit operand (Il instruction) it is 0~31.
N beyond this range will set the N value error flag "ERR" to 1, and do not carry out this instruction.

X0

40P.BITRD

F—EN™S: WX 0
N: 7

S

X15

Y
FOTB—()

rERR—

0

follows:

X7

® The instruction at left reads the 7th bit (X7) status from
WX0 (X0~X15) and output to YO. The results are as

X0

wxo [1]1]o]o[1]1]1]o]1]o]o]1]1]o]0]1]

b
Il
\‘

YO

dxo=T

9-13

Data movement instructions

FUN 41 FUN 41
D BIT WRITE D
BITWR BITWR
D : Register for bit write
41DP.BITWR——
Write control -ENT D : 'ERR— N value error N : The bit number of the D register to be
written.
N:
Write bit-INB D, N may combine with V, Z to serve indirect
address application

Range| WX | WY WM WS |[TMR|CTR| HR IR OR SR [ROR | DR K XR
WXO0 | WYO WMO0 WS0 | TO | CO RO | R3840 | R3904 | R3968 | R5000 | DO 0 0|V

Ope- \ \ \ \ \ \ \ \ \ \ \ Lo :
rand WX240|WY240| WM1896 | WS984 | T255 | C255 | R3839 | R3903 | R3967 | R4167 | R8071 | D3071 |15 31| Z
D @) ©) O 10|10] O O 1O 1O | O @)
0101 O o | O @) ©) ©) ©) ©)

N O ©) ©) @)

® When write control "EN" =1 or "EN 1 " (I instruction) changes from 0 to 1, will write the write bit (INB) into

the Nth bit of register D.

® When the operand is 16 bit, the effective range of N is 0~15. For 32 bit (Il instruction) operand it is 0~31.
N beyond this range, will set the N value error flag "ERR" to 1, and do not carry out this instruction.

X0 41P.BITWR
—ENMD: R 0 [ERR— ® The instruction at left writes the status of the write bit
X1 N: 3 INB into B3 of RO. Assuming
——INB X1 =1, the result will be as follows:
X1
N=3 S\ {dxo=T
plro [[[T T[T T Ta[]1]]
B15 B3 BO

Bits other than B3 remain unchanged

9-14

Data movement instructions

FUN42 D4 FUN42 DY
BITMV BIT MOVE BITMV

S : Source data to be moved

42DP.BITMV. Ns: Assign Ns bit within S as source bit
Move control -ENT4 S "ERR— Nvalueerror p - pestination register to be moved
Ns: Nd: Assign Nd bit within D as target bit
b S, Ns, D, Nd may combine with V, Z to serve
Nd: L o
indirect address application
Range| WX | WY WM WS | TMR [CTR| HR IR OR SR | ROR | DR K XR
WXO0 | WYO | WMO | WSO | TO | CO | RO |R3840 | R3904|R3968|R5000| DO | jcms o |V
Ope- \ \ \ \ \ \ \ \ \ \ \ I 4 number |
rand WX240 |WY240 | WM1896 | WS984 | T255 | C255 | R3839 | R3903 | R3967 | R4167 | R8071 | D3071 z
S O O O O O 0| O O O O O O O O
Ns O O O O O]0O0]| O O O O O O 0~31 O
D O O O O]0O0]| O O o | O O O
Nd O O O O O 10| O O O O O O 0~31 O

® When move control "EN" = 1 or "EN 1" (Id instruction) changes from 0 to 1, will move the bit status
specified by Ns within S into the bit specified by Nd within D.

® When the operand is 16 bit, the effective range of N is 0~15. For 32 bit (I} instruction) operand the effective
range is 0~31. N beyond this range will set the N value error flag "ERR" to 1, and do not carry out this

instruction.
X(})—ENT 4;21’:.BVIV"1;(MV 0 LERR— ® The instruction at left moves the status of B11 (X11)
Ns: 11 within S into the B7 position within D. Except bit B7,
D: R 0 other bits within D does not change.
Nd: 7
X15 X11 X0
Slwx0|||||1|\|||||||||||
Ns=11——I 5
I xo=T
Nd=7 S
plro | [[[[[T TTIIPT]T]
B15 B7 BO

9-15

Data movement instructions

FUN43 MM FUN43 4
NBMV NIBBLE MOVE NBMV

S : Source data to be moved

43DP.NBMV Ns: Assign Ns nibble within S as source nibble
Move control -ENTH S : +FERR— N value error o)
N D : Destination register to be moved
S:
Db Nd: Assign Nd nibble within D as target nibble
’ S, Ns, D, Nd may combine with V, Z to serve
Nd: - L
indirect address application
Range| WX | WY WM WS |[TMR|CTR| HR IR OR | SR |ROR| DR K XR
WX0 | WYO | WMO | WSO | TO | CO | RO |R3840|R3904|R3968|R5000| DO |16/32-bit| V
Ope- \ \ \ \ \ \ \ \ \ \ \ \ +/- :
rand WX240|WY240| WM1896 | WS984 | T255 | C255 | R3839 | R3903 | R3967 | R4167 |[R8071| D3071 | number | Z
S O O O O OO0]| O O O O O O O O
Ns O O O O 1]O10O0]| O O O O O O 0~7 O
D O O O OO]| O o 1O | O O O
Nd O O O O 1]O]1O]| O O @) O O O 0~7 O

® When move control "EN" = 1 or "EN 1 " (Id instruction)has a transition from 0 to 1, will move the Ns’th
nibble from within S to the nibble specified by Nd within D. (A nibble is comprised by 4 bits. Starting from the
lowest bit of the register, BO, each successive 4 bits form a nibble, so BO~B3 form nibble 0, B4~B7 form
nibble 1, etc...)

® When the operand is 16 bit, the effective range of Ns or Nd is 0~3. For 32 bit (I} instruction) operand the
range is 0~7. Beyond this range, will set the N value error flag "ERR" to 1 , and do not carry out this

instruction.
X0 ENT §3P:N§MVO | ERR_ ® The instruction at left moves the third nibble NB2
’ (B8~B11) within S to the first nibble NB1 (B4~B7) within
Ns: 2 D. Other nibbles within D remain unchanged.
D : R 1
Nd: 1
B15 BO
s{Rro [| [[[afafofaf [[[T [[]]
NB3 NB2 NB1 NBO

Ns=2 ———— |3

Nd=1 | BE

9-16

Data movement instructions

FUN44 D4 FUN44 DY
BYMV BYTE MOVE BYMV

S : Source data to be moved

44DP.BYMV . . -
Move control -ENM § - ERR_ N value error Ns : Assign Ns byte within S as source byte
Ns : D : Destination register to be moved
D : Nd : Assign Nd byte within D as target byte
Nd: S, Ns, D, Nd may combine with V, Z to serve
indirect address application
Range| WX | WY WM WS | TMR | CTR | HR IR OR | SR |ROR| DR K XR
WX0 | WYO | WMO | WSO | TO | CO | RO |R3840 R3904|R3968|R5000| DO | om0 | V
Ope- \ \ \ \ \ \ \ \ \ \ \ \ 3 :
rand WX240|WY240| WM1896 | WS984 | T255 | C255 | R3839 | R3903 | R3967 | R4167 | R8071|D3071 +1- number z
S O O O O O O O O O O O O O O
Ns O O O O O O O O O O O O 0~3 O
D O O O O O O O 1O 10O] O O
Nd O O O O O O O ©)) O O O 0~3 O

® When move control "EN" = 1 or "EN 1 " (I instruction) has a transition from 0 to 1, move Nsth byte within S
to Ndth byte position within D. (A byte is comprised of 8 bits. Starting from the lowest bit of the register, BO,
each successive eight bits form a byte, so BO~B7 form byte 0, B8~B15 form byte 1, etc...)

® When the operand is 16 bit, the effective range of Ns or Nd is 0~1. For 32 bit (Il instruction) operand, the
range is 0~3. Beyond this range, will set the N value error flag "ERR" to 1, and do not carry out this

instruction.
X0 44DP.BYMV ® The instruction at left moves the third byte (B16~B23)
—ENMS : R0 [ERR— within S (32 bit register composed of R1R0), to the first
Ns: 2 byte within D (32 bit register composed of R3R2). Other
D: R 2 bytes within D remain unchanged.
Nd: 1
B15 BO
s[rRiRO[[[[[[[[[folafafafofafal [[P TTILTTTITTT[]
Byte3 BytkeZ Byte1 ByteO
Ns=2 1=
U xo=T
Nd=1 !3\\[/
Byte3 Byte2 Byte1 ByteO
prR3R2[[[[[[[T [P [] [tfofafafafofaa] T[]][]
B31 BO

9-17

Data movement instructions

FUN 45 M4
XCHG

EXCHANGE

FUN45 M4
XCHG

45DP.XCHG—

Exchange control —ENT Da:

Da : Register a to be exchanged

Db : Register b to be exchanged

Db: Da, Db may combine with V, Z to serve indirect address
application
Range| WY WM WS |TMR|CTR| HR | OR | SR [ROR| DR | XR
wyo | wmo | wso | To | co | Ro |R3904|R3968|R5000] DO | v
Ope- \ \ \ \ \ \ \ \ \ \ :
rand WY240| WM1896 |WS984 | T255 | C255 |R3839|R3967|R4167|R8071|D3071| Z
Da O O O O |10 | O O[O | O] O O
Db O O O O |10 | O OO | O] O O

® When exchange control "EN" = 1 or "EN 1 " (I instruction) has a transition from 0 to 1, will exchanges the
contents of register Da and register Db in 16 bits or 32 bits (I instruction) format.

X0 45P.XCHG

F——EN7 Da:
Db:

® The instruction at left exchanges the contents of the

R 0
R 1 16-bit RO and R1 registers.

B15 BO
Da | RO |0(0|0|0O|0O|O|O|O|O|O|O|O|O|OfO]|O
Db | R1 |11 11 (11|11 1]1]1[1]1]1][1

I xo=T

B15 BO
Da | RO |1|1 111 1 111
Db | R1 |0|0|0O|O|O|O|O|O|O|O|OfO|O|OfO]|O

9-18

Data movement instructions

FUN 46 4
SWAP

BYTE SWAP

FUN 46 4
SWAP

46P
Swap control EN¢{ SWAP| D

D : Register for byte data swap

D may combine with V, Z to serve indirect address application

Range| WY WM WS |TMR|CTR| HR | OR | SR [ROR | DR | XR
WYO0 | WMO | WSO | TO | CO | RO |R3904|R3968|R5000| DO %

Ope- \ \ | \ \ \ \ \ \ \)
rand WY240 | WM1896 | WS984 | T255 | C255 | R3839 | R3967 | R4167 | R8071|D3071| Z
D O O Ol]o]J]o0o]l]O OO O] OO

® When swap control "EN" =1 or "EN 1 " (I instruction) has a transition from 0 to 1, swap the data of the low
byte, Byte 0 (B0~B7), and the high byte, Byte 1 (B8~B15), in the 16 bit register specified by D.

B15

B8 B7

BO

| Byte 1 (high) | Byte 0 (low) |

X0 46P
%EN{ SWAP|R 0

Byte1

\/

® The instruction at left swaps the data of the low byte
(BO~B7) and the high byte (B8~B15) in RO. The results
are as follows:

ByteO

D[Rro [o]lo[1]1]o]o]1]1
B15 B8

B15

dxo=1

1]1[1]1]o]o]o]o0]
B7 BO

BO

p| RrRo [1]1]1]1]0]0]0]0

ofof1]1]ofo]1]1]

9-19

Data movement instructions

FUN47 4
UNIT

NIBBLE UNITE

UNIT

FUN47 4

Unite control —ENTH S :

47P.UNIT ——
FERR— N value error

S : Starting source register to be united
N : Number of nibbles to be united

D : Registers storing united data

N:
D : S, N, D may combine with V, Z to serve indirect
address application
Range| WX wY WM WS |[TMR|CTR| HR IR OR SR |ROR| DR | K| XR
WX0 | WYO | WMO | WSO | TO | CO | RO |R3840|R3904 |R3968 |R5000(DO | 1 | Vv
Ope- \ \ \ \ \ \ \ \ \ \ \ \ \ :
rand WX240 | WY240 | WM1896 | WS984 | T255 |C255| R3839 | R3903 | R3967 | R4167 [R8071 |D3071| 4 | Z
S O O O O O |O]| O O O O O O O
N O O O O O 1O O O O O O O O] O
D O O O OO O O o* | O O O

® When unite control "EN" = 1 or "EN 1" (Id instruction) has a transition from 0 to 1, take out the lowest

nibbles NBO, of N successive registers starting from S, and fill them into NBO, NB1,
ascending order. Nibbles not yet filled in D (when N is odd) are filled with 0.

NBn-1 of D in
(A nibble is comprised by 4 bits.

Starting from the lowest bit in the register, BO, each successive four bits form a nibble, so BO~B3 form nibble
0, B4~B7 form nibble 1, etc...).

® This instruction only provides WORD (16 bit) operand. Because of this, there are usually only 4 nibbles can
be involved. Therefore the effective range of N is 1~4. Beyond this range, will set the N value error flag
"ERR" to 1, and do not carry out this instruction.

® The instruction at left takes out NBO from 3 registers, RO,

R2, and fills them into NBO~NB2 within WYO0

N=3
NB3 NB2 NB1 NBO
D | o000l | | |
Y151\ Y0

Set the not united NB as 0

X0 47P.UNIT

FENT™S : R 0 [ERR— R1 and
N:3 register
D: WY 0 gister.

B15 B12B11 B8B7 B4B3 B0

S RO 0001

N=3 < S+1| R1 0010

S+2 | R2 0100

NB3 NB2 NB1 NBO

g

X0

9-20

Data movement instructions

FUN 48 [d FUN 48 [d
NIBBLE DISTRIBUTE
DIST DIST
48P.DIST ——— S : Source data to be distributed
Distribution control—ENTH S : FERR—N value error N : Number of nibbles to be distributed
N: D : Starting register storing distribution data
D: S, N, D may combine with V, Z to serve
indirect address application
Range| WX wy WM WS |TMR|CTR| HR IR OR | SR |ROR| DR K XR
WX0 | WYO | WMO | WSO | TO | CO | RO |R3840|R3904|R3968|R5000(DO | 16-bit \Y;
Ope- \ \ \ \ \ \ \ \ \ \ \ \ +- >
rand WX240 | WY240 |WM1896 |WS984| T255 |C255 | R3839 | R3903 |R3967 | R4167 |R8071|D3071 | number | Z
S O O O O 1O 10 O O O O O O O O
N O O O O | O]0O] O O O O O O 1~4 O
D O O O | O]O] O O |01 O] O O

® When distribution control "EN" = 1 or "EN 1" (Id instruction) has a transition from 0 to 1, will take N
successive nibbles starting from the lowest nibble NBO within S, and distribute them in ascending order into
the 0 nibbles of N registers starting from D. The nibbles other than NBO in each of the registers within D are
all set to zero. (A nibble is comprised by 4 bits. Starting from the lowest bit in a register, B0, each successive

4 bits form a nibble, so BO~B3 form nibble 0, B4~B7 form nibbl

e1,etc...)

This instruction only provides WORD (16 bit) operand. Therefore there are usually only 4 nibbles can be

involved, so the effective value of N is 1~4. Beyond this range, will set the N value error flag "ERR" to 1, and

do not carry out this instruction.

X0 48P.DIST
FENTMS : WX 0 rERR—
N: 3
D: R 0 RO~R2.
N=3
X15 X1 X0
s | wxo [oooofo10000100001—— D
NB3 NB2 NBT NBO —>D+1
D+2
=
X0=T

® The instruction at left writes NBO~NB2 from the WXO0
register into the NBO of the 3 consecutive registers

NB3 NB2 NB1 NBO

B15 BO

RO {[0000{0000(0000|0001

R1 {0000|{0000(0000|0010

R2 {0000({0000(0000|0100
NB1~NB3 are all seta "0 "

9-21

Shifting/Rotating instructions

FUN 51 FUN 51
DIb SHIFT LEFT DIb
SHFL SHFL
51DP.SHFL D : Register to be shifted
Shift control-ENT+ D : OTB— Shift-out bit N : Number of bits to be shifted
N: N, D may combine with V, Z to serve indirect
Shift in bit —INB "ERR—Nvalueerror 5qress application

Range| WX | WY WM WS |TMR|CTR| HR IR OR | SR |ROR | DR K XR
WX0 | WYO | WMO | WSO | TO | CO | RO [R3840|R3904|R3968|R5000| DO | 1 1] v

Ope- \ \ \ \ \ \ \ \ \ \ \ \ | or |)
rand WX240|WY240| WM1896 | WS984 | T255 | C255| R3839 | R3903 | R3967 | R4167 | R8071|D3071[16 32| Z
D ©) ©) O 101010 O lo 1O | O ©)

N O O O O]l]O0]0O] O] O0O]O]1]0O0]101]160 ©) ©)

will appear at shift-out bit "OTB".

INB

AN

INB

VAN

® When shift control "EN" = 1 or "EN 1 " (I instruction) has a transition from 0 to 1, will shift the data of the D
register towards the left by N successive bits (in ascending order). After the lowest bit BO has been shifted
left, its position will be replaced by shift-in bit INB, while the status of shift-out bits B15 or B31 (Il instruction)

® If the operand is 16 bit, the effective range of N is 1~16. For 32 bits (II] instruction) operand, it is 1~32.
Beyond this range, will set the N value error flag "ERR" to 1, and do not carry out this instruction.

Y0 @ The instruction at left shifts the data in register RO

X0 51P.SHFL
—ENMD: R 0 ’OTB;(> towards the left by 4 successive bits. The results are
N: 4 shown below.
INB FERR—
YO B15 RO BO
[]« [ofo[1]1]ofo[1]o[1[1]1]1]0]o]0]o] -
dxo=1
YO0 B15 RO BO
Lofol1[o[1]1[1]1]ofofofof4[1]1]1]
* YANWANVANWAN

9-22

Shifting/Rotating instructions

FUN 52 FUN 52
D SHIFT RIGHT DIb
SHFR SHFR
52DP.SHFR D : Register to be shifted
Shift control ~ENT D : -OTB- Shift-out bit N : Number of bits to be shifted
N: D, N may combine with V, Z to serve indirect
Shift in bit—INB -ERR— N value error address application

Range| WX | WY | WM | WS |TMR|CTR| HR | IR | OR | SR |[ROR| DR K |XR
WX0 | WYo | WMO | WSO | TO | CO | RO |R3840|R3904|R3968|R5000| DO |1 1| V

Ope- \ \ \ \ \ \ \ \ \ \ \ \ or [| >
rand WX240 | WY240 | WM1896 | WS984 | T255 | C255 |R3839|R3903|R3967|R4167|R8071| D3071 16 32| Z
D O O O 101010 O 10 10| O O

N O O O O]J]O0]J]O0O]J]O]J]O]O]O O] O O O

® When shift control "EN" = 1 or "EN 1" (I8 instruction) has a transition from 0 to 1, will shift the data of D
register towards the right by N successive bits (in descending order). After the highest bits, B15 or B31 (I
instruction) have been shifted right, their positions will be replaced by the shift-in bit INB, while shift-out bit
BO will appear at shift-out bit "OTB".

® |f the operand is 16 bit, the effective range of N is 1~16. For 32 bits (Il instruction) operand, it is 1~32.
Beyond this range, will set the N value error flag "ERR" to 1, and do not carry out this instruction.

X0 52P.SHFR YO . , : . .

- ENTD: R 0 lotB—{) ® The instruction at left shifts the data in RO register

N: 15 towards the right by 15 successive bits. The
——INB 'ERR results are shown below.

INB B15 RO BO YO0

o] - [1]o[1]o[+]ol1]o[1]o[r]o[1]o]1]o] - []

A *

dxo=1

INB B15 RO BO YO0

o] [o]ofo]o]ofo]o]ofo]o]ofo]o[o]o[1] [o]

A VANVANWANVANVANVANYANVANVANVANVANVANVANVANVAN *

9-23

Shifting/Rotating instructions

FUN 53 D[4 FUN 53 D4
ROTL ROTATE LEFT ROTL
>3DP.ROTL D : Register to be rotated

Rotate control-ENT D : FOTB— Rotate-out bit
N : N : Number of bits to be rotated

+ERR— N value error D, N may combine with V, Z to serve indirect
address application

Range| WX | WY WM WS |TMR|CTR| HR IR OR | SR |ROR | DR K XR
WX0 | WYO | WMO | WSO | TO | CO | RO |R3840|R3904|R3968|R5000| DO | 1 Y

Ope- \ \ \ \ \ \ \ \ \ \ \ I lor] -
rand WX240 | WY240 | WM1896 | WS984 | T255 | C255 | R3839 | R3903 | R3967 | R4167 | R8071|D3071(16 32| Z
D @) @) O 101010 O lo 10O 0O O

N O ©) ©) O 100 OO]1]O0 1010160 O O

® When rotate control "EN" = 1 or "EN 1 " (Id instruction) has a transition from 0 to 1, will rotate the data of D
register towards the left by N successive bits (in ascending order, ie. in a 16-bit instruction, BO—B1, B1—
B2, , B14—B15, B15—B0. In a 32-bit instruction, BO—B1, B1—B2, , B30—~B31, B31—-B0). At the
same time, the status of the rotated out bits B15 or B31 (Il instruction) will appear at rotate-out bit "OTB".

® If the operand is 16 bit, the effective range of N is 1~16. For 32 bits (II] instruction) operand, it is 1~32.
Beyond this range, will set the N value error flag "ERR" to 1, and do not carry out this instruction.

P.ROTL
X0 >3PRO YO ® The instruction at left rotates data from the RO
H—ENMD : R 0 [OTB—)

register towards the left 9 successive bits. The

N: 9
L'ERR results are shown below.
RO BO
F|1|1|1|1|0|0|0|0| |0|1|0|1|0|1|0ﬁ
YO
dxo=1
B15 RO BO

lo[+[o]1]of1]of1]1]1]1]o]ofo]o]1]

YO

*

9-24

Shifting/Rotating instructions

FUN 54 M4 FUN 54 M4
ROTR ROTATE RIGHT ROTR
54DP.ROTR- D : Register to be rotated
Rotate control ~ENT{ D : rOTB— Rotate-out bit N : Number of bits to be rotated

N:

D, N may combine with V, Z to serve indirect

"ERR— Nwvalueerror ,yyress application

Range| WX | WY WM WS |TMR | CTR | HR IR | OR [SR [ROR| DR K XR
WX0 | WYO | WMO | WSO | TO | CO | RO |R3840|R3904|R3968|R5000| DO | 1 11 v

Ope- \ \ \ \ \ \ \ \ \ \ \ \ Lor ||
rand WX240|WY240| WM1896 | WS984 | T255 | C255 |R3839 | R3903|R3967 |R4167 |R8071|D3071[16 32| Z
D ©) @) ©) 10 |0 O 1O |0] O O

N ©) O ©) ©) OO] O0]J]O0O]O]]O]10]O0O ©) O

® When rotate control "EN" = 1 or "EN 1 " (I instruction) has a transition from 0 to 1, will rotate the bit data of
D register towards the right by N successive bits (in descending order, ie. in a 16-bit instruction, B15—B14,
B14—B13, , B1—=B0, BO—B15. In a 32-bit instruction, B31—B30, B30—-B29, , B1—-B0, BO—>B31). At
the same time, the status of the rotated out B0 bits will appear at the rotate-out bit "OTB".

® If the operand is 16 bit, the effective range of N is 1~16. For 32 bits (II] instruction) operand, it is 1~32.
Beyond this range, will set the N value error flag "ERR" to 1, and do not carry out this instruction.

X0 54P.ROTR Yo
——ENMD: R 0 rOTB——) ® The instruction at left rotates data from RO register
N: 8 towards the right 8 successive bits. The results are
'ERR shown below.
B15 RO BO
r|1|1|1|1|0|0|0|0| |0|1|0|1|0|1|0’—’
YO
I xo=T
B15 RO BO

[1]of1]ol1]of1]o]1]1[1][1]0]0]0]0]

o[1]

*

9-25

Code conversion instructions

FUN 57 FUN 57
= DECODE =
DECOD DECOD
S : Source data register to be decoded
57P.DECOD—— (16 bits)
Decode control —ENT{ S : rERR—Range error Ns : Starting bits to be decoded within S
Ns : N_ : Length of decoded value (1~8 bits)
N : D : Starting register storing decoded results
D : (2~256 points = 1~16 words)

S, Ns, NL’ D may combine with V, Z to serve
indirect address application

Range| WX | WY WM WS |TMR|CTR| HR IR OR SR | ROR | DR K XR
WX0 | WYO WMO WSo0 | TO | CO RO | R3840 | R3904 | R3968 | R5000 | DO 16-bit \Y

Ope- | | |] | | | | e umber|
rand WX240 | WY240 | WM1896 | WS984 | T255 | C255 | R3839 | R3903 | R3967 | R4167 | R8071 | D3071 z
s oclol o lofolololTolTolololol] o [0

N [O[Ol O JToOoJololo[olo[O[O]O/[o~5]0

N, olol o JoJolololJoloJololo]1~8][O

D ol o [Tofoflolo ololofo O

@ This instruction, will set a single bit among the total of 2Nt discrete points (D) to 1 and the others bit are set to
0. The bit number to be set to 1 is specified by the value comprised by BNs~BNs+N;—1 of S (which is called
the decode value, BNs is the starting bit of the decode value, and BNs+N_—1 is the end value) ,.

@ When decode control "EN" = 1 or "EN 1 " (I instruction) has a transition from 0 to 1, will take out the value
BNs~BNs+N -1 from S. And with this value to locate the bit position and set D accordingly, and set all the
other bit to zero

@ This instruction only provides 16 bit operand, which means S only has BO~B15. Therefore the effective range
of Ns is 0~15, and the N length of the decode value is limited to 1~8 bits. Therefore the width of the decoded
result D is 2'8 points = 2~256 points = 1~16 words (if 16 points are not sufficient, 1 word is still occupied). If
the value of Ns or N is beyond the above range, will set the range-error flag "ERR" to 1, and do not carry out
this instruction.

@ |If the end bit value exceeds the B15 of S, then will extend toward BO of S + 1. However if this occurs then
S+1 can’t exceed the range of specific type of operand (ie. If S is of D type register then S+1 can’t be D3072).
If violate this, then this instruction only takes out the bits from starting bit BNs to its highest limit as the decode

value.
X0 57P.DECOD—
L ENTS : WX 0 'ERR_ ® The instruction at left takes out the data of five
Ns : 3 successive bits from X3 to X7 within the WXO0
NL: 5 register and decodes it. The results are then stored
D : R 2 in the 32-bit register starting at R2.

X15 X3 X0
slolof1]1lololololol1]olol1T1]1]0]
\—\/—/

Length of decode value NL=5,s0 bit value is formed by X7~X3 (equal 9)

Axo=T
R3 R2

D lol1lololololololololo]
B31 B9 BO

Because N_=5,the width of D is 2°= 32 point = 2 word. That is, D is formed by R3R2, and the decoded value is
01001=9, therefore B9 (the 10th point) within D is set to 1, and all other points are 0.

9-26

Code conversion instructions

FUN 58 [d ENCODE FUN 58 [d
ENCOD ENCOD
S : Starting register to be encoded
58P.ENCOD—— Ns : Bit position within S as the encoding start
Encode control-ENT S : tD=0—All is 0 point
Ns - NL : Number of encoding discrete points (2~256)
High/Low priority—H/L { N "ERR—Range error D : Number of register storing encoding results
D : (1 word)

S, Ns, N, D may combine with V, Z to serve
indirect address application

Range| WX | WY WM WS |TMR|CTR| HR IR OR SR [ROR | DR K XR
WX0 | WYO WMO WS0 TO Co RO | R3840 | R3904 | R3968 | R5000 | DO 16-bit \Y,

Ope- | | .
rand WX240 | WY240 | WM1896 | WS984 | T255 | C255 | R3839 | R3903 | R3967 | R4167 | R8071 | D3071 | number z
s ocolololololololololololo O

N |O]lo[o [oJololololololololo5]0

N Ol ol ol olJolololololol oo [2r26]0

D ol ol olololo olololo O

@ When encode control "EN" = 1 or "EN 1 " (I instruction) has a transition from 0 to 1, will starting from the
points specified by Ns within S, take out towards the left (high position direction) N. number of successive bits
BNs~BNs+N,—1 (BNs is called the encoding start point, and its relative bit number is bO;BNs+N_ -1 is called
the encoding end point, and its relative bit number is BN_-1). From left to right do higher priority (when H/L=1)
encoding or from right to left do lower priority (when H/L=0) encoding (i.e. seek the first bit with the value of 1,
and the relative bit number of this point will be stored into the low byte (BO~B7) of encoded resultant register
D, and the high byte of D will be filled with 0.

(bNL—=1) (bn) (br) (bo) < Relative bit number
BNs +NL—1 BNs
B15 } B1 BO
— -Direction of extension-- | | | | [| | | |olo[1]o[o]o] | Joo]o[o[o]1] [| | [] |s
High Total N, discrete points Low
High priority search direction g Low priority search direction

D (00000000 HorL |

As shown in the diagram above, for high priority encoding, the bit first to find is by (with a value of 12), and for
low priority encoding, the bit first to find b (with a value of 4). Among the N, discrete points there must be at
least one bit with value of 1. If all bits are 0, will not to carry out this instruction, and the all zero flag "D=0" will
setto 1.

Because S is a 16-bit register, Ns can be 0~15, and is used to assign a point of BO~B15 within S as the
encoding start point (b0). The value of NL can be 2~256, and it is used to identify the encoding end point, i.e. it
assigns NL successive single points starting from the start point (b0) towards the left (high position direction)
as the encoding zone (i.e. b0O~bNL-1). If the value of Ns or NL exceeds the above value, then do not carry out
this instruction, and set the range-error flag "ERR" as 1.

9-27

Code conversion instructions

FUN 58 [d
ENCOD

ENCODE

FUN 58 [d
ENCOD

The first bit with the value of 1
for high priority encoding

X0 58P.ENCOD———
H—EN™S : R 0 [D=0—
Ng : 9
HL Ny : 36 | ERR—
D : WY 0
S
(b0)

B15 B9 BO
RO [0|0|0|o|0|0f0|Of0|O|OfO|O[O|O]|O
R1 [o|1]|0|o0|0fof0|0f0]|0|Of0|O]O
R2 |o|o|1|o|o|ofo|ofo|o|ofo|1[0]|0]O

B47 B44 1 B32

(b35) (b26)

@ [f the encoding end point (bNL—1) beyond the B15 of S, then continue extending towards S+1, S+2, but it must
not exceed the range of specific type of operand. If it goes beyond this, then this instruction can only take the
discrete points between b0 and the highest limit into account for encoding.

® The instruction at left is a high priority encode example.

When X0 goes from 0 to 1, will take out toward left 36

successive bits starting from B9 (b0) specified by Ns

within S, and perform high priority encoding (because
H/L = 1). That is, starting from b35 (encoding end point),
move right to find the first bit with the value of 1. The

resultant value of this example is b26, so the value of D

is 001AH=26, as shown in the diagram below.

X0=T
=

Y15 Y0
wvo [oJofofofofofo[ol TTTTTTT]

High byte always =26
fill with "0" (encode value)

9-28

Code conversion instructions

FUN 59 [d FUN 59 [d

7-SEGMENT CONVERSION

—78G —75G

S : Source data to be converted

N : The nibble number within S for conversion

59P.—7SG

Conversion control—ENT S : "ERR— N value error D : Register storing 7-segment result
N: S, N, D may combine with V, Z to serve indirect
D: address application

Range| WX | WY | WM WS |TMR|CTR| HR | IR | OR | SR | ROR | DR K | XR
WX0 | WYO | WMO | WSO | TO | CO | RO |R3840|R3904 | R3968 |R5000 | DO | 16-bit | Vv

Ope- \ \ \ \ \ \ \ \ \ \ \ \ +-)
rand WX240 | WY240 | WM1896 | WS984 | T255 | C255 | R3839 | R3903 | R3967 | R4167 | R8071 | D3071 | number | Z
S ©) @) ©) ©) O]l]O0 | O @) @) O O O O O

N ©) ©) ©) O O]l]O0 | O O O O ©) O | 0~3 | O

D ©) ©) ©) O]10O0]| O O O]0O | O O

When conversion control "EN" = 1 or "EN 1 " (I instruction) has a transition from 0 to 1, will convert N+1
number of nibbles (A nibble is comprised by 4 successive bits, so BO~B3 of S form nibble 0, B4~B7 form
nibble 1, etc...)within S to 7-segment code, and store the code into a low byte of D (High bytes does not
change). The 7 segment within D are put in sequence, with "a" segment placed at B6, "b" segment at
B5, ,"g" segment at BO. B7 is not used and is fixed as 0. For details please refer the "7-segment code
and display pattern table" shown in page 9-31.

Because this instruction is limited to 16 bits, and S only has 4 nibbles (NBO~NB3), the effective range of N
is 0~3. Beyond this range, will set the N value flag error "ERR" to 1, and does not carry out this instruction.

Care should be taken on total nibbles to be converted is N+1. N=0 means one digit to convert, N=1 means
two digits to convert etc...

When using the FATEK 7-segment expansion module(FB-7SG) and the FUN84 (7SEGO0) handy instruction
for mixing decoding and non-decoding application, FUN59 and FUN84 can be combined to simplify the
program design.(Please refer the example in chapter 17)

9-29

Code conversion instructions

FUN 59 [d
—73G

7-SEGMENT CONVERSION

FUN 59 [d
—7SG

(Example 1) When M1 OFF—ON, convert hexadecimal to 7-Segment

Ml 59P.-»7SG ——
——ENTS :RO -ERR—
N:O
D :R100
Original R100=0000H
RO=0001H > R100=0030H (1)

« Figure left shown the conversion of first digit(nibble) of
RO to 7-segment and store in low byte of R100, the
high byte of R100 remain unchanged.

(Example 2) When M1 ON, convert the hexadecimal to 7-Segment

Ml 59.-7SG——
——EN{S :RO "ERR—
N:1
D : R100
R0O=0056H > R100=5B5FH (56)

« Instruction at left will convert the first and the second
digit of RO to 7-segment and store in R100.

 The low byte of R100 stores first digit.

» The high byte of R100 stores second digit.

(Example 3) When M1 ON, converting hexadecimal to 7-Segment

e Instruction at left will convert the first, second and

M1 59.-7SG—— o)
I ENJS :RO 'ERR_ third digit of RO to 7-segment and store in R100 and

N:2 R101.

D : R100 * The low byte of R100 stores first digit.
« The high byte of R100 stores second digit.
» The low byte of R101 stores third digit.
» The high byte of R10 remain unchanged.

Original R101=0000H
R0=0A48H > R100=337FH (48)

R101=0077H (A)

(Example 4) When M1 ON, convert hexadecimal to 7-Segment

« Instruction at left will convert 1~4 digit of RO to
7-segment and store in R100 and R101.

 The low byte of R100 stores first digit.

 The high byte of R100 stores second digit.

» The low byte of R101 stores third digit.

rERR—

M1 59.-7SG———
——EN+S :RO
N:3
D : R100
R0=2790H >

 The high byte of R10 stores 4" digit.

R100=7B7EH (90)
R101=6D72H (27)

9-30

Code conversion instructions

FUN 59 [FUN 59 [
7-SEGMENT CONVERSION
—7SG —75G
Nibble data of S Low byte of D
7-segment Display
Hexadecimal | Binary display format | g7 | g | B5 | B4 | B3 | B2 | B1 | Bo | Pattem
number number) a b c d e f g
0 0000 0 1 1 1 1 1 1 0 B
1 0001 0 0 1 1 0 0 0 0 g

2 0010 0 1 1 0 1 1 0 1 g:ﬂ

3 0011 0 1 1 1 1 0 0 1 ﬁ

4 0100 0 0 1 1 0 0 1 1 LUH

5 0101 @ B0 H 0 1 0 1 1 0 1 1 5

B2 B4 =

6 0110 0 1 0 1 1 1 1 1 b

Ca > @

7 0111 0 1 1 1 0 0 1 0 [f:gﬂ

8 1000 0 1 1 1 1 1 1 1 EP

9 1001 0 1 1 1 1 0 1 1 g

A 1010 0 1 1 1 0 1 1 1 H

B 1011 0 0 0 1 1 1 1 1 b

C 1100 0 1 0 0 1 1 1 0 g:

I

D 1101 0 0 1 1 1 1 0 1 @

E 1110 0 1 0 0 1 1 1 1 E

F 1111 0 1 0 0 0 1 1 1 F

7-segment display pattern table

9-31

Code conversion instructions

FUN 60 [d
—ASC

ASCIlI CONVERSION

FUN 60 4
—ASC

60P.—ASC
Conversion control—ENT™ S : AAAAAAAA S : Alphanumerics to be converted into ASCII code
JAVAVAVAY .))
D - D : Starting register storing ASCII results
Range| WY WM WS | TMR | CTR | HR OR SR ROR DR | Alphanumeric
o WYO | WMO | WSO | TO | CoO RO | R3904 | R3968 | R5000 | DO 112
[PE= \ \ \ \ \ \ \ \ \ \ ;
rand WY240 | WM1896 | wsos4 | T255 | c255 | R3839 | Rae67 | Rate7 | Reort | Daor1 | AlPhanumeric
S O
D O O O O O O O o* o O

[) When conversion control "EN" = 1 or "EN 1" (I instruction) has a transition from 0 to 1, will convert

alphabets and numbers stored in S (S has a maximum of 12 alphanumeric character) into ASCII and store

it into registers starting from D. Each 2 alphanumeric characters occupy one 16-bit register.

@ The application of this instruction, most often, stores alphanumeric information within a program, and waits

until certain conditions occur, then converts this alphanumeric information into ASCII and conveys it to

external display devices which can accept ASCII code.

X0 60P.— ASC
——ENM™S : ABCDEF
registers starting from RO.
D: R 0
S D

High Byte Low Byte
RO | 42 (B) | 41 (A)

Alphabet X0=T
R1| 44 (D) | 43(C)

ABCDEF =

R2 | 46 (F) | 45 (E)

® The instruction at left converts the 6 alphabets
-ABCDEF into ASCII then stores it into 3 successive

9-32

Code conversion instructions

FUN 61 4
—SEC

Hour:Minute:Second to Seconds Conversion

FUN 61 [d
—SEC

61P.

Conversion control —ENT™ S :

—SEC

+tD=0—Result as 0 converted

S : Starting calendar data register to be

D: D : Starting register storing results
Range| WX wy WM WS |[TMR|CTR| HR IR OR | SR |ROR | DR K
WX0 | WYO | WMO | WSO | TO | CO | RO [R3840|R3904|R3968|R5000| DO | —117968399
Ope- \ \ \ \ \ \ \ \ \ \ \ \ \
rand WX240 | WY240 | WM1896 | WS984 | T255 | C255| R3839 | R3903 | R3967 | R4167 |[R8071 | D3071| 117964799
S O O O O O |O| O O O O O O O
D O O O 1010 O O]1]O0 10| O

® When conversion control "EN" = 1 or "EN 1 " (Id instruction) has a transition from 0 to 1, will convert the
hour: minute: second data of S~S+2 into an equivalent value in seconds and store it into the 32-bit register

formed by combining D and D+1. If the result = 0, then set the "D = 0" flag as 1.

® Among the FB-PLC instructions, the hour: minute: second time related instructions (FUN61 and 62) use 3
words of register to store the time data, as shown in the diagram below. The first word is the second register,
the second word is the minute register, and finally the third word is the hour register, and in the 16 bits of
each register, only B14~B0 are used to represent the time value. While bit B15 is used to express whether
the time values are positive or negative.
is 1 it represents a negative time value. The B14~B0 time value is represented in binary, and when the time
value is negative, B14~B0 is represented with the 2's complement. The number of seconds that results from
this operation is the result of summation of seconds from the three registers representing hours: minutes:

seconds.
B15 B14 BO B15B0
S (sec) —32768 sec~32767 sec D the sec. value.
S+1 (min) —32768 min~32767 min = D-+1
S+2 (hr) —32768 hr~32767 hr B31 B30 B16

t
The B15 of each registers is used to represent the sign of each time value

® Besides FUN61 or 62 instruction which treat hour: minute: second registers as an integral data, other

When B15 is 0, it represents a positive time value, and when B15

instructions treat it as individual registers.

® The example program at below converts the hour: minute: second data formed by R20~R22 into their
equivalent value in seconds then stored in the 32-bit register formed by R50~R51. The results are shown

below.

AL B31 is used to represent the positive or
negative nature of the sec. value

R20 OE11H =3601 sec
S 7 R21 FD2FH =-721min
R22 03F3H =1011hr
U xo=1
{ R50 EE45H } =3599941 sec
R51 0036H

9-33

Code conversion instructions

FUN 62 [d FUN 62 [d
SECOND—HOUR : MINUTE : SECOND
—HMS —HMS
62P.—~HMS] .
Conversion control —ENT- § | D=0 _ Result as 0 S :Starting register of second to be converted
D: D :Starting register storing result of conversion
FOVR— Over range (hour : minute : second)
Range| WX WY WM WS |TMR|CTR| HR IR OR SR [ROR | DR K
WX0 | WYO | WMO WSO | TO | CO | RO |R3840|R3904 |R3968|R5000| DO |—117968399
Ope- | | \ | \ \ \ \ \ \ \ \ \
rand WX240 | WY240| WM1896 | WS984 | T255 | C255 | R3839 | R3903 | R3967 | R4167 | R8071 | D3071| 117964799
S O O O O O 10 O O O O O O O
D O O O O 10 O O o | O O
® When conversion control "EN" = 1 or "EN 1" (I instruction) has a transition from 0 to 1, will convert the

second data from the S~S+1 32-bit register into the equivalent hour : minute : second time value and store it
in the three successive registers D~D+2. All the data in this instruction is represented in binary (if there is a
negative value it is represented using the 2's complement.)

B15 BO B15 BO
S] D (sec) —59 sec~59 sec
S+1 Second = D+1 (min) —59 min~59 min

B31 B16 D+2 (hr) — 32768 hr~32767 hr

t 1
The bit B31 of the second The bits B15 of each register are used as
register is used as the sign the sign bit of the hour : minute : second
bit of the second value. value.

As shown in the diagram above, after convert to hour : minute : second value, the minute : second value can
only be in the range of -59 to 59, and the hour number can be in the range of -32768 to 32767 hours.
Because of this, the maximum limit of D is -32768 hours, -59 minutes, -59 seconds to 32767 hours, 59
minutes, 59 seconds, the corresponding second value of S which is in the range of -117968399 to
117964799 seconds. If the S value exceeds this range, this instruction cannot be carried out, and will set the
over range flag "OVR" to 1. If S = 0 then result is 0 flag "D = 0" will be set to 1.

The program in the diagram below is an example of this instruction. Please note that the content of the
registers are denoted by hexadecimal, and on the right is its equivalent value in decimal notation.

X0 62P.~HMS RO SD1T7H } 6315287 sec
—EN™MS @ R 0 |D=0— R1 0060H
FOVR—
R10 002FH 47 sec
R11 000EH 14 min
R12 06DAH 1754 hr

9-34

Code conversion instructions

FUN 63 [d .) FUN 63 [d
L HEX Conversion of ASCII code to hexadecimal value L HEX

S : Starting source register.

63p.~HEX N : Number of ASCII codes to be converted to
Conversion control —ENT S : FERR— hexadecimal values.

N D : The starting register that stores the result

D: (hexadecimal value).

S, N, D, can associate with V, Z to do the indirect
addressing application.

Range| WX | WY WM WS |TMR|CTR| HR IR OR SR | ROR | DR K XR
WX0 | WYO | WMO | WSO | TO | CO | RO |RS3840 |R3904 | R3968 | R5000 | DO onit |V

Ope- \ \ \ \ \ \ \ \ \ \ \ \) :
rand WX240 | WY240 | w1896 | w984 | T255 | C255 | R3839 | R3903 | R3967 | R4167 | R8071 | D3071 | ™™ | 7
S ©) ®) ®) O O]10]| O O O ®) ®) ®) O

N O ®) ®) O 1O 10| O O O ®) ©) O [1~511 | O

D ®) ®) O 1O 100 O 1O 1O O O

® When conversion control “EN” =1 or “EN 1 ” (I instruction) changes from 0—1, it will convert the N
successive hexadecimal ASCII character(‘0'~'9’A'~'F’) convey by 16 bit registers (Low Byte is effective) into
hexadecimal value, and store the result into the register starting with D. Every 4 ASCII code is stored in one
register. The nibbles of register, which does not involve in the conversion of ASCIl code will remain
unchanged.

® The conversion will not be performed when N is 0 or greater than 511.

® When there is ASCII error (neither 30H~39H nor 41H~46H), the output “ERR” is ON.

® The main purpose of this instruction is to convert the hexadecimal ASCII character (‘0'~'9’/A’~'F’), which is
received by communication port1 or communication port2 from the external ASCIl peripherals, to the
hexadecimal values that the CPU can process directly.

9-35

Code conversion instructions

FUN 63 4
—HEX

Conversion of ASCII code

to hexadecimal value

FUN 63 [d
—HEX

(Example 1) When M1 from OFF—ON, ASCII code converted to hexadecimal value.

M1 63P—~HEX
——ENTS :RO
N:1
D : R100

RO=0039H (9) >

Originally R100=0000H
R100=0009H

e Converts the ASCIl code of RO into hexadecimal

value and store to nibbleO (nibble1~nibble3 remain

unchanged) of R100

(Example 2) When M1 is ON, ASCII code converted to hexadecimal value.

Ml 63 HEX—
- EN{S :RO)
N:2
D : R100

R0O=0039H (9)
R1=0041H (A) >

Originally R100=0000H
R100=009AH

Converts the ASCIl code of RO and R1 into
hexadecimal value and store to low byte (high byte

remain unchanged) of R100

(Example 3) When M1 is ON, ASCII code converted to hexadecimal value.

M1 63 HEX———
——EN-S :RO ’
N:3
D : R100

RO=0039H (9)
R1=0041H (A)

R2=0045H (E) =

Originally R100=0000H

R100=09AEH

Converts the ASCIl code of RO and R1 into
hexadecimal value and store result into R100

(nibble 3 remain unchanged)

(Example 4) When M1 is ON, ASCII code converted to hexadecimal value.

M1 63 >HEX——
——EN{S :RO
N:6
D : R100

RO=0031H (1)
R1=0032H (2)
R2=0033H (3)
R3=0034H (4)
R4=0035H (5) =2
R5=0036H (6)

Originally R100=0000H
R101=0000H

R100=3456H
R101=0012H

* Converts the ASCII code of RO~R5 into hexadecimal
value and store it to R100~R101

9-36

Code conversion instructions

FUN 64 4
—ASCII

Conversion of hexadecimal value to ASCII code

FUN 64 4
—ASClII

64P.—~ASCIl —

Conversion control—ENT S

S : Starting source register

N : Number of hexadecimal digit to be converted to

N ASCII code.
D :
D : The starting register storing result.
S, N, D, can associate with V, Z to do the indirect
addressing application.
Range| WX | WY WM WS |TMR|CTR| HR IR OR SR | ROR | DR K XR
WX0 | WYO | WMO | WSO | TO | CO | RO |[R3840 |R3904 |R3968 | R5000| DO , v
Ope- L] NIRRT e
rand WX240 | WY240 | WM1896 | WS984 | T255 | C255 | R3839 | R3903 | R3967 | R4167 | R8071 | D3071 z
S O O O O O | O O O O O O O O
N O O O O O | O O O O O O O | 1~511 | O
D O O O O | O O O o | O O O

) When conversion control “EN” =1 or “EN 1" (Id instruction) changes from 0—1, will convert the N
successive nibbles of hexadecimal value in registers start from S into ASCII code, and store the result to

low byte (high byte remain unchanged) of the registers which start from D.

) The conversion will not be performed when the value of N is 0 or greater than 511.

] The main purpose of this instruction is to convert the numerical value data, which PLC has processed, to
ASCII code and transmit to ASCII peripherals by communication port1 or communication port 2.

9-37

Code conversion instructions

FUN 64 4 . . FUN 64 [d
L ASCII Conversion of hexadecimal value to ASCII code L ASCII

(Example 1) When M1 changes from OFF—ON, it converts hexadecimal value to ASCII code.

Ml 64P.>ASCIF——y « Converts the Nibble 0 of RO to ASCII code and stores
EN™S - 1:0 it into R100 (High byte does not change).
N:
D :R100
RO=0009H > R100=0039H (9)

(Example 2) When M1 is ON, it converts hexadecimal value to ASCII code.

4.—>ASCIFH—-
MI N S .;OSC « Converts the NBO~NB1 of RO to ASCII code and
sz stores it into R100 ~ R101 (high bytes remain
D :R100 unchanged).
R0=009AH > R100=0039H (9)

R101=0041H (A)

(Example 3) When M1 is ON, it converts hexadecimal value to ASCII code.

Ml 64.-ASCIF—
EN- S : RO e Converts the NBO~NB2 of RO to ASCII code and
N:3 stores it into R100~R102
D : R100
R0=0123H > R100=0031H (1)

R101=0032H (2)
R102=0033H (3)

(Example 4) When M1 is ON, it converts hexadecimal value to ASCII code.

Ml 64.-ASCIF—
- ENIS :RO * Converts the NBO~NB5 of RO~R1 to ASCIl code
N:6 and stores it into R100~R105
D : R100
R0=3456H > R100=0031H (1)
R1=0012H R101=0032H (2)

R102=0033H (3)
R103=0034H (4)
R104=0035H (5)
R105=0036H (6)

9-38

Flow control instructions

END PROGRAM END END

End control —EN-+ END No operand

® When end control "EN" = 1, this instruction is activated. Upon executing the END instruction and "EN" = 1, the
program flow will immediately returns to the starting point (0000M) to restart the next scan — i.e. all the
programs after the END instruction will not be executed. When "EN" = 0, this instruction is ignored, and
programs after the END instruction will continue to be executed as the END instruction is not exist.

® This instruction may be placed more than one point within a program, and its input (end control "EN") controls
the end point of program execution. It is especially useful for debugging and for testing.

® [t's not necessary to put any END instructions in the main program, CPU will automatic restart to start point
when reach the end of main program.

0000M
[]
[]
Program 1 . Program 1
[]
3 X0
€ |_X0=1 ORG X0
= < | 4
5 A — | EN END END
8
g
é- .
[]
Program 2 . Program 2
X0 .
X1=1
F/
X1
| | ORG X1
T EN END END
[]
[]
X0=X1=0 Program 3 . Program 3
[]

9-39

Flow control instructions

FUN 65 FUN 65

LBL LABEL LBL

—65

% LBL S S : Alphanumeric, 1~6 characters

This instruction is used to make a tag on certain address within a program, to provide a target address for
execution of JUMP, CALL instruction and interrupt service. It also can be used for document purpose to
improve the readability and interpretability of the program.

This instruction serves only as the program address marking to provide the control of procedure flow or for
remark. The instruction itself will not perform any actions; whether the program contains this instruction or not,
the result of program execution will not be influenced by this instruction.

The label name can be formed by any 1~6 alphanumeric characters and can’t be duplicate in the same
program. The following label names are reserved for interrupt function usage. These “reserved words”, can’t
be used for normal program labels.

Reserved words Description
XO0+I~X15+ (INTO~INT15) labels for external input (X0~X15) interrupt
XO0—I~X15-1 (INTO-~INT15-) service routine.

labels for high speed counter HSCO~HSC7
interrupt service routine.

HSCOI~HSC7I

1MSI (1MS) -~ 2MSI (2MS) - 3MSI (3MS) -

AMSI (4MS) > 5MSI (5MS) » 10MSI (10MS) > Labels for 8 kinds of internal timer interrupt
50MSI (50MS) + 100MSI (100MS) service routine.
HSTAI (ATMRI) Label for High speed fixed timer interrupt

service routine.

PSO0I~PSO3| L.a-bels .for the pu!se ou.tput command
finished interrupt service routine.

Only the interrupt service routine can use the label names listed on above table, if mistaken on using the
reserved label on the normal subroutine can cause the CPU fail or unpredictable operation.

The label of following diagram illustration served only as program remarks (it is not treated as a label for call
or jump target). For the application of labeling in jump control, please refer to JMP instruction for
explanation. As to the labeling serves as subroutine names, please refer to CALL instruction for details.

65
LBL PGM1
Program 1

~65
LBL PGM2
Program 2

9-40

Flow control instructions

FUN 66 4

JMP

JUMP

FUN 66 4
JMP

Jump control —

66P
ENT{ IMP

LBL

LBL : The program label to be jumped

® When jump control “EN"=1 or “EN 1 ” (I instruction) changes from 0—1, PLC will jump to the location behind
the marked label and continuous to execute the program.

® This instruction is especially suit for the applications where some part of the program will be executed only
under certain condition. This can shorter the scan time while not executes the whole program.

® This instruction allows jump backward (i.e. the address of LBL is comes before the address of JMP
instruction). However, care should be taken if the jump action cause the scan time exceed the limit set by the
watchdog timer, the WDT interrupt will be occurred and stop executing.

® The jump instruction allows only for jumping among main program or jumping among subroutine area, it can’t

jump across main/subroutine area.

X0

66
] %EN{ IMP

PATHB

Program A
—65
LBL PATHB
Program B

In the left diagram, when X0=1, the program will jump
directly to the LBL position named PATHB and
continuing to execute program B. Therefore it will skip
the program A and none of the instructions of
program A will be executed. The status of registers
and the coils associated with program A will keep
unchanged (as if there is no program section A).

9-41

Flow control instructions

FUN 67 4 FUN 67 4
CALL CALL CALL

LBL : The subroutine label name to be called.

) When call control “EN"=1 or “EN 1 ” (Id instruction) changes from 0—1, PLC will call (perform) the
subroutine bear the same label name as the one being called. When execute the subroutine, the program
will execute continuous as normal program does but when the program encounter the RTS instruction then
the flow of the program will return back to the address immediately after the CALL instruction.

65

® Al the subroutines must end with one “return from — LBL SUBI
subroutine instruction RTS” instruction; otherwise it
will cause executing error or CPU shut down.
. . Program 1
Nevertheless, an RTS instruction can be shared by
subroutines (so called as multiple entering SUB1{=® —66
subroutines; even though the entry points are — JMP SUB3
different, they have a same returning path) as
illustrated in the right diagram subroutine SUB1~3. 63
LBL SUB2
) When main program called a subroutine, the
subroutine also can call the other subroutines (so Program 2
called the nested subroutines) for up to 5 levels at
the most (include the interrupt routine). 65
SUB2 LBL SUB3
1X 2X 3X 4X 5X
;i SUB3 Program 3
LBL SUBI LBL SUB2 LBL SUB3 LBL SUB4
CALL SUBI1 CALL SUB2 CALL SUB3 CALL SUB4|
RTS
RTS RTS RTS RTS

)

Main program area Subroutine area

L] Interrupt service programs (HSCOI~HSC7I - PSO0I~PSO3I ~ X0+I~X15+] /INTO~INT15 ~ X0-I~X15-1
/INTO—~INT15-~ HSTAI “/ATMRI ~ 1MSI 1MS - 2MSI,/2MS - 3MSI,“3MS - 4MSI| 4MS - 5MSI /5MS -
10MSI,~10MS - 50MSI,“50MS ~ 100MSI,“100MS) are also a kind of subroutine. It is also placed in sub
program area. However, the calling of interrupt service program is triggered off by the signaling of
hardware to make the CPU perform the corresponding interrupt service program (which we called as the
calling of the interrupt service program). The interrupt service program can also call subroutine or
interrupted by other interrupts with higher priority. Since it is also a subroutine (which occupied one level),
it can only call or interrupted by 4 levels of subroutine or interrupt service program. Please refer to RTI
instruction for explanation.

9-42

Flow control instructions

subroutine area. Its input side has no control signal, so there is no way to serially connect any contacts.
This instruction is self sustain, and is directly connected to the power line.

return to the address immediately after the CALL instruction, which were previously executed and will
continue to execute the program.

may not be executed (it will be regarded as not exist). If the above instructions are used in the subroutine
and causing the subroutine not to execute the RTS instruction, then PLC will halt the operation and set the
M1933(flow error flag) to 1. Therefore, no matter what the flow is going, it must always ensure that any

FUN 68 FUN 68
RTS RETURN FROM SUBROUTINE RTS
~68
% RTS
[This instruction is used to represent the end of a subroutine. Therefore it can only appear within the

When PLC encounter this instruction, it means that the execution of a subroutine is finished. Therefore it will

If this instruction encounters any of the three flow control instructions MC, SKP, or JMP, then this instruction

subroutine must be able to execute a matched RTS instruction.

For the usage of the RTS instruction please refer to instructions for the CALL instruction.

9-43

Flow control instructions

FUN 69 FUN 69

RETURN FROM INTERRUPT

RTI RTI

~69

% RTI

The function of this instruction is similar to RTS. Nevertheless, RTS is used to end the execution of sub
program, and RTI is used to end the execution of interrupt service program. Please refer to the explanation
of RTS instruction.

A RTl instruction can be shared by more than one interrupt service program. The usage is the same as the
sharing of an RTS by many subroutines. Please refer to the explanation of CALL instruction.

The difference between interrupts and call is that the sub program name (LBL) of a call is defined by user,
and the label name and its call instruction are included in the main program or other sub program.
Therefore, when PLC performs the CALL instruction and the input “EN"=1 or “EN 1~ (Id instruction)
changes from 0—1, the PLC will call (execute) this sub program. For the execution of interrupt service
program, it is directly used with hardware signals to interrupt CPU to pause the other less important works,
and then to perform the interrupt service program corresponding to the hardware signal (we call it the
calling of interrupt service program). In comparing to the call instruction that need to be scanned to
execute, the interrupt is a more real time in response to the event of the outside world. In addition, the
interrupt service program cannot be called by label name; therefore we preserve the special “reserved
words” label name to correspond to the various interrupts offered by PLC (check FUN65 explanation for
details). For example, the reserved word X0+l is assigned to the interrupt occurred at input point X0; as
long as the sub program contains the label of X0+I, when input point X0 interrupt is occurred (X0: T), the
PLC will pause the other lower priority program and jump to the subroutine address which labeled as X0+l
to execute the program immediately.

If there is a interrupt occurred while CPU is handling the higher priority (such as hardware high speed
counter interrupt) or same priority interrupt program (please refer to Chapter 10 for priority levels), the PLC
will not execute the interrupt program for this interrupt until all the higher priority programs were finished.

If the RTI instruction cannot be reached and performed in the interrupt service routine, may cause a serious
CPU shut down. Consequently, no matter how you control the flow of program, it must be assured that the
RTI instruction will be executed in any interrupt service program.

For the detailed explanation and example for the usage of interrupts, please refer to Chapter 10 for
explanation.

9-44

Flow control instructions

FUN 70 FUN 70
FOR FOR FOR

70
% FOR N N : Number of times of loop execution

Range| WX | WY WM WS |[TMR|CTR| HR IR OR | SR | ROR| DR K

WXO0 | WYO | WMO | WSO | TO | CO | RO |R3840|R3904|R3968 |R5000| DO 1
Ope- \ | \ \ \ \ \ \ \ \ \ \ \

rand WX240|WY240| WM1896 | WS984 | T255 | C255 | R3839 | R3903 | R3967 | R4167 | R8071 | D3071 | 16383
N O | O ©) O]O]O]O]J]O]O]]O]]O]O]O

) This instruction has no input control, is connected directly to the power line, and cannot be in series with
any conditions.

[The programs within the FOR and NEXT instructions form a program loop (the start of the loop program is
the next instruction after FOR, and the last is the instruction before NEXT). When PLC executes the FOR
instruction, it first records the N value after that instruction (loop execution number), then for N times
successively execution from start to last of the programs in the loop. Then it jumps out of the loop, and
continues executes the instruction immediately after the NEXT instruction.

[The loop can have a nested structure, i.e. the loop includes other loops, like an onion. 1 loop is called a
level, and there can be a maximum of 5 levels. The FOR and NEXT instructions must be used in pairs. The
first FOR instruction and the last NEXT instruction are the outermost (first) level of a nested loop. The
second FOR instruction and the second last NEXT instruction are the second level, the last FOR instruction
and the first NEXT instruction form the loop's innermost level.

70 « In the example in the diagram at left, loop ® will be
FOR 2 executed 4 x3 x2 = 24 times, loop @ willbe

executed 3 x 2 =6 times, and loop ® will be

! executed 2 times.

r70
FOR 3

o If there is a FOR instruction and no corresponding NEXT

instruction, or the FOR and NEXT instructions in the
2 nested loop have not been used in pairs, or the sequence
70 of FOR and NEXT has been misplaced, then a syntax
FOR 4 error will be generated and this program may not be
executed.

2 O ERI©) ¢ In the loop, the JMP instruction may be used to jump out
of the loop. However, care must be taken that once the
NEXT loop has been entered (and executed to the FOR

instruction), no matter how the program flow jumps, it

2 must be able to reach the NEXT instruction before

reaching the END instruction or the bottom of the

program. Otherwise FB-PLC will halt the operation and
8 show an error message.

r71

r71

NEXT

71 * The effective range of N is 1~16383 times. Beyond this

NEXT range FB-PLC will treat it as 1. Care should be taken , if
the amount of N is too large and the loop program is too
2 big, a WDT may occur.

9-45

Flow control instructions

FUN 71
NEXT

LOOP END

FUN 71
NEXT

71

h

NEXT

° This instruction and the FOR instruction together form a program loop. The instruction itself has no input

control, is connected directly to the power line, and cannot be in series with any conditions.

) When PLC has not yet entered the loop (has not yet executed to the FOR instruction, or has executed but

then jumped out), but the NEXT instruction is reached, then PLC will not take any action, just as if this

instruction did not exist.

] For the usage of this instruction please refer to the explanations for the FOR instruction on the preceding

page.

9-46

Temperature control instructions

FUN 72 The Convenient instruction for temperature measuring module FUN 72
TP4 (Brief description of function) TP4
Tp : Type of Temperature sensor, it can be J or

r712.TP4———
Execution control —EN- Tp : r ERR— Parameter error
Pl FALM— Sensor line breaking
Sm :
Ym
AR :
TR :
WR:
Range| Y HR | IR |ROR| DR K
YO RO |R3840 |R5000| DO
Ope- \ | \ \ \
rand Y255 |R3839|R3903 |R8071 | D3071
Tp 0~2
Pl 0~3
Sm nx4 > n=0~7
Ym O
AR O
TR ©) o | O
WR ©) o | O

Sm:

Ym:

AR :

TR

WR:

K Type thermo-coupler or PT-100 RTD.

: Polarity and the voltage range setting for

temperature module.

Starting temperature point measured by
the temperature module.

Starting output for preserved for controlled
temperature measurement module.

Analogue input register preserved for
controlled temperature module.

: Starting register for temperature readings

storing.

Starting working register for this instruction
instance.

Brief description of instruction function

) This is a dedicate instruction for the FB-J(K)4 or FB-RTD4 multiplexing temperature measurement module.
With this instruction, the user can acquire temperature readings by simply fill a table formed by registers.
Each instance of instruction can handle one FB-J(K)4 or FB-RTD4 module.

° This instruction must incorporate with FB-J(K)4 or FB-RTD4 multiplexing temperature measurement
module in its usage. Hereby it introduced briefly about the function of this instruction only. For details of the
function, explanation, usages and examples, please refer to Chapter 20 “Temperature measurement of
FB-PLC and PID Control”.

9-47

Temperature control instructions 1

Convenient instruction for temperature measuring of temperature module FUN 73

TSTC

Tp:

Sm:

Ym:

AR:

TR:

Yh

Sh

Zh :

Sv:

Os:

PR:

DR:

OR:

WR:

FUN 73
TSTC + PID temperature control
r73.TSTC
Execution control- EN1 Tp : - ERR—Parameter error
Heating/Cooling-H/C- P! - AOO— ggr{rslgre {?ﬁgrgreaking PI
o rAO1- "cl"glrlrtlrpoeirg}ggmg
Ym:
AR :
TR :
Yh :
Sh :
Zh :
Sv
Os :
PR :
IR :
DR :
OR :
WR:
Y0 RO |R3840| DO |R5000
Ope- | \ | | |
rand Y255 | R3839 | R3903 | D3071 | R8071

Tp 0~2

PI 0~3

Sm nx4 n=0~7

Ym O

AR O

TR O O | O

Yh O

Sh 0~23

Zh 1~24

Sv O O | O

Os O o | O

PR O o | O

IR O O o

DR ©) o | O

OR O O | O

WR O o | O

Type of temperature sensor, it can be J
or K Type thermo-coupler or PT-100
RTD.

: Polarity and the voltage range setting for

temperature module.

Starting temperature point measured by
controlled temperature module.

Starting output point preserved for
controlled temperature module.

Analogue input register preserve for
controlled temperature module.

Starting register for temperature
readings storing.

: Starting point of PWM temperature

control output point.

: starting temperature point for processing

by this instruction instance.

Number of temperature points
processed by this instruction instance.

Starting register for temperature setting
value storing.

Starting register for temperature
deviation value storing.

Starting register for gain setting value
storing.

: Starting register for integral time

constant setting value storing.

Starting register for differential time
constant setting value storing.

Starting register for temperature control
value output storing.

Starting working register for this
instruction instance.

Description

® This instruction is used for the measuring for FB-J(K)4 or FB-RTD4 temperature measuring module and

in its usage.

PID temperature control.

With this instruction, the user may easily reach multi-points PID loop

temperature control by table filling method.

) This instruction must incorporate with FB-J(K)4 or FB-RTD4 multiplexing temperature measuring module

Hereby it introduced briefly about the function of this instruction only. For details of the

function, explanation, usages, and examples, please refer to Chapter 20 “Temperature measuring of
FB-PLC and PID Control”.

9-48

I/O instructions

FUN74 @ FUN74 @
IMMIDIATE 1/O
IMDIO IMDIO
74P.IMDIO
Reflesh control ~ENT D : D : Starting number of 1/0O points to be refreshed
N: N : Number of I/O points to be refreshed
Range| X Y K
Xn of Yn of 1
Ope- Main Main |
rand Unit. Unit. 24
D O O
N O

For normal PLC scan cycle, the CPU gets the entire input signals before the program is executed, and then
perform the executing of program based on the fresh input signals. After finished the program execution the
CPU will update all the output signals according to the result of program execution. Only after the complete
scan has been finished will all the output results be transferred all at once to the output. Thus for the input
event to output responses, there will be a delay of at least 1 scan time (maximum of 2 scan time). With this
instruction, the input signals or output signals specified by this instruction can be immediately refresh to get
the faster input to output response without the limitation imposed by the scan method.

When refresh control "EN" = 1 or "EN 1 " (I instruction) has a transition from 1 to 0, then the status of N
input points or output points (D~D+N-1) will be refreshed.

The 1/O points for FB-PLC's immediate 1/O are only limited to 1/0 points on the main unit. The table below
shows permissible I/O numbers for 20, 28, and 40 point main units:

Main-unit type)) .
20 points 28 points 40 points
Permissible numbers
Input signals X0~X11 X0~X15 X0~X23
Output signals YO~Y7 YO~Y11 YO~Y15

If the intended refresh 1/0 signals of this instruction is beyond the range of /O points specified on above
table then PLC will be unable to operate and the M1931 error flag will be set to 1. (for example, if in a
program, D=X7, N=10, which means X7 to X16 are to be immediately retrieved. Supposing the main unit is
FB-28MB, then its biggest input point is X15, and clearly X16 has already exceeded the main unit's input
point number so under such case M1931 error flag will be set to 1).

With this instruction, PLC can immediately refresh input/output signals. However, the delay of the hardware
or the software filter impose on the 1/0O signals still exist. Please pay attention on this.

9-49

1/O instructions

FUN75 4 FUN75 [
EILT FILTER ADJUST FILT
5P N : Filter time 0~30 (mS)
Input control —ENT4 FILT N

@ This instruction is especially use for the 16 input points X0~X15 of main unit for the software integral
(filter) time adjustment. When input control “EN”=1 or “EN 1 ” (I instruction) changes from 0—1, will
sets the input filter time to be NmS for the 16 points from X0~X15.

@ As a matter of fact, the 16 input points of X0~X15 have all been pre-processed by Dardware Digital Filter
to enhance the noise immunity capability. The highest input frequency of X0~ X15 that the hardware digital
filter can be configured is range from 4KHZ~512KHZ. The best setting can be achieved dynamically
according to the field condition.

@® Except the 16 input point of X0~X15, all the other input points had been added with roughly 4mS of RC
filter circuit to enhance the noise immunity, thus these signal are not suitable for high speed operation. If
use this function to set the filter time to zero (default 4ms) and configure the Hardware Digital Filter to Max.
frequency (default) then X0~X15 inputs can be used for high speed application.

9-50

I/O instructions

FUN 76 I FUN 76 I
DECIMAL- KEY INPUT
TKEY TKEY
76D.TKEY IN : Ke)./ input p(.)lnt |
Input control—EN- IN : KPR Key-in action D : register storing key-in numerals
D : KL: starting coil to reflect the input status
KL: D may combine with V, Z to serve indirect
address application
Range X Y M S WY WM WS |TMR|{CTR| HR | OR | SR |[ROR| DR | XR
X0 | YO | MO | SO | WYyo | WMO | WSO | TO | CO | RO [R3904|R3968R5000| DO | V
Ope- \ \ \ \ \ \ \ \ \ \ \ \ \ \ :
rand X240 | Y240 |M1896| S984 | WY240 [WM1896 | WS984 | T255 | C255 | R3839|R3967 |R4167 |R8071|D3071| Z
IN O
D O O O o1 0O O OO |10 O |0
KL O @) O

This instruction has designated 10 input points IN~IN+9 (INO~IN9) to one decimal number entry (IN->0,
IN+1->1...). According to the key-in sequence (ON) of these input points, it is possible to enter 4 or 8

decimal numbers into the registers specified by D.

When input control "EN" = 1, this instruction will monitor the
10 input points starting from IN and put the corresponding
number into D register while the key were depressed. It will
wait until the input point has released, then monitor the next
"ON" input point, and shift in the new number into D register
(high digit is older than low digit) . For the 16-bit operand, D
register can store up to 4 digits, and for the 32-bit operand 8
digits may be stored. When the key numbers full fill the D
register, new key-in number will kick out the oldest key
number of the D register. The key-in status of the 10 input
points starting from IN will be recorded on the 10
corresponding coil starting from KL. These coils will set to 1
while the corresponding key is depressed and remain
unchanged even if the corresponding key is released. Until
other key is depressed then it will return to zero. As long as
any input point is depressed (ON), then the key-in flag KPR
will set to 1. Only one of INO~IN9 key can be depressed at
the same time. If more than one is pressed, then the first
one is the only one taken. Below is a schematic diagram of
the function with 16-bit operand.

When input control "EN" = 0, this instruction will not be executed. KPR output and KL coil status will be 0.
However, the numerical values of D register will remain unchanged.

X20 76.TKEY ——— YO0
H—EN{IN: X 0 KPR—)
D: R 0
KL: M 0

e The instruction at left represents the input point X0 with
the number "0", X1 is represented by 1, ... , MO records
the action of X0, M1 records the action of X1 ... , and the
input numerical values are stored in the RO register.

Kev
o [0
BCD Code
Forced out
N
1000S| 100S| 10S| 1S
J
D| BIN(©0~9999) |

9-51

1/O instructions

FUN 76 M
TKEY

DECIMAL- KEY INPUT

FUN 76 M
TKEY

The following diagram is the input wiring schematic for this example:

({4 4§

{

{

[(¢

- CclIxo] x1t [x2 [x38[x4 x5] x6] X7 | x8 X9}

FBE-PLC input side

[If the X0~X3 key-in sequence follow the OPOBRB®OO®® sequence in the following diagram. At step @®
and @ the X20 is 0, so there was no key generated, only steps @ @ @ ® ® are effective. Because the
register can only hold 4 key numbers, Of these 5 steps the first key was kick out. The key strokes 3302 of
the steps ® @ ® ® are entered in the RO register.

X20

X0

X1

X2

X3

MO

M1

M2

M3

YO

RO

®
@ @)
@) ©)
e @]
@ | o @] & ©

0000

><0001><0013X0133X 1330 ><

3302

9-52

I/O instructions

FUN 77 FUN 77
HKEY HEX-KEY INPUT HKEY

IN : Key scan input point number

77D.HKEY OT: Starting Multiplex scan output point
Execution control—-EN - IN : ~NKP—Number key press (4 points)
OT: D : Register storing
D : -FKP— Function key press "key-in numbers"
KL: KL : Starting relay for key status
D may combine with V, Z to serve indirect

address application

Range| X Y M S | Wy WM WS |TMR|[CTR| HR | OR | SR |ROR| DR XR
X0 | YO | MO | SO | WyO | WMO | WSO | TO | CO | RO |R3904 R3968 R5000| DO v

Ope- \ | \ \ \ \ \ \ \ \ \ \ \ \ :
rand X240 | Y240 |M1896 | S984 | WY240 | WM1896 | WS984 | T255 | C255 | R3839 | R3967 |R4167 |R8071|D3071| Z

IN O

oT O

D @) @) @) 101010 |0 |0 | O @)

KL O O ©)

) The numeric (0~9) key function of this instruction is similar as for the TKEY instruction. The hardware
connection for TKEY and HKEY is different. For TKEY instruction each key have one input point to connect,
while HKEY use 4 input points and 4 output points to form a 4x4 multiplex 16 key input. 4 x4 means that
there can be 16 input keys, so in addition to the 10 numeric keys, the other 6 keys can be used as function
keys (just like the usual discrete input). The actions of the numeric keys and the function keys are
independent and have no effect on each other.

° When execution control "EN" = 1, this instruction will scan the numeric keys and function keys in the matrix
formed by the 4 input points starting from IN and the 4 output points starting from OT. For the function of the
numeric keys and "NKP" output please refer to the TKEY instruction. The function keys maintain the key-in
status of the A~F keys in the last 6 relays specified by KL (the first 10 store the key-in status of the numeric
keys). If any one of the A~F keys is depressed, FKP (FO1) will set to 1. The OT output points for this
instruction must be transistor outputs.

) The biggest number for a 16-bit operand is 4 digits (9999), and for 32-bit operand is 8 digits (99999999).
However, there are only 6 function keys (A~F), no matter whether it is a 16-bit or 32-bit operand.

Function ——= /Qi(/Qi(/Qi‘ /Q?/
C D E F

FNKP— keys

o EAraraT
AT A A

keys

« The instruction in the diagram above uses /39/0 />?/1 /99/2 /39/3

X0~X3 and YO0~Y3 to form a multiplex key ‘
input. It can input numeric values of 8 digits + C[x0o[xt[x2]X3 [
and stores the results in R1R0. The input
status of the function keys is stored in

X10 7T1D.HKEY
F—EN-IN: X
oT: Y
D: R
KL: M

FBE-PLC (transistor output)

*

[C Y0 [YI [Y2 Y3 [~

M10(A)~M15(F).

9-53

1/O instructions

FUN 78 M

DSW

DIGITAL SWITCH INPUT

FUN 78 M
DSW

78D.DSW————

Input control—EN- IN :

~DN — Readout completed

IN : Switch input points

OT: Multiplex scan output points (4 points)

OT: D : register storing readout value
D : "ERR— Reading error D may combine with V, Z to serve indirect
address application D
Range X Y WY WM WS | TMR | CTR | HR OR SR | ROR | DR XR
X0 | Yo | wyo | wMo | wso | To | co | RO |R3904|R3968|R5000| DO | V
Ope- | \ | \ \ \ \ \ \ | \ \ :
rand X240 | Y240 |WY240 | WM1896 |WS984| T255 | C255 | R3839 | R3967 | R4167 | R8071 | D3071| Z
IN O
oT O
D O O O O O O O o 1 O O O

] When input control "EN" = 1, this instruction will readout one digit data from the 4 input points starting from
IN (INO~IN3). It takes 4 scans to read out a group of 4-digit BCD values (0000~9999) and store them into D
register. With a 32-bit operand, each scan can get 2 digits of data by reading the additional digit from
IN4-IN7 and store it in the D+1 register. Each bit of OTO~OT3 will sequentially set to 1 and get the digit data
respectively into 10°(ones), 10'(tens), 10%(hundreds), and 10%(thousands). As l