
5-1

Chapter 5 Description of Function Instructions

5.1 The Format of Function Instructions

In this chapter we will introduce the function instructions of FBs-PLC in details. All the explanations for each function will
be divided into four parts including input control, instruction number/name, operand and function output. If use the FP-08
to input the mnemonic instruction, except for the T, C, SET, RST and SFC instructions that can be entered directly by
pressing a single key stroke on FP-08, other function instructions must be entered by key in the instruction number rather
than the instruction name. An example is shown in below.

Ladder Diagram FP-08 Mnemonic code

Example 1: Single input instruction

0EN
15

Operation control (+1) R CY Carry(FO0)

FUN 15
 D : R 0

Example 2: Multiple input instruction

7.UDCTR
CV :

PV :U/D

CLR

R 0

10

CUP

Up/Down count

Clear control

Count-Up(FO0)PSUCounter Pulse

FUN 7
 CV: R 0
 PV: 10

Remark：The words inside the hollow box in mnemonic code field are the prompting message from FP-08 such as D:,
CV:, and Pr: and are not entered by the user.

5.1.1 Input Control

Except for the seven function instructions that do not have input control, the number of the input control of other FBs-PLC
function instructions can be ranged from one to four. Execution of the instructions and operations is dependent on the
input control signal or the combinations of the several input control signals. The ladder programming software for FACON
PLC - WinProladder can help user to complete the complex design and document works. In the ladder program window
we can see all the function instructions were displayed by blocks surrounded with abbreviated words for ease of
comprehension, include inputs, outs, function name, and parameter names. As shown in example 2 above, the first input
mark "PSU" indicates when the "PSU" input changes from 0 to 1 (rising edge) the counter will be increased or decreased
by 1 (depending on the "U/D" status). The second input mark "U/D" with a status of 1 represents the word above slash
("U") and the status 0 represents the word under slash ("D"), that is second input "U/D" states =1, the counter will be
increased by 1 when "PSU" input from 0 to 1, and when "U/D"=0, the counter will be decreased by 1. The third input mark
"CLR" indicates when this input is 1, the counter will be cleared to 0. Chapter 7 give the descriptions of input control of
each function instruction.

Remark: There are total of seven instructions whose input control should be directly connected to the origin-line
those are MCE, SKPE, LBL, RTS, RTI, FOR, and NEXT. Please refer to chapter 6 and 7 for more
detailed explanations.

5-2

All input controls of the function instructions should be connected by the corresponding elements, otherwise a syntax
error will occur. As shown in example 3 below, the function instruction FUN7 has three inputs and three elements before
FUN7. ORG X0, LD X1 and LD X2 corresponds to the first input PSU, second input U/D and third input CLR.

Example 3:

Ladder Diagram FP-08 Mnemonic code

X0

X2

7.UDCTR
CV :

PV :U/D

CLR

R 0

10

CUP

X1

PSU

ORG
LD
LD
FUN 7

CV : R 0
PV : 10

FUN7 need three
elements because
it has three inputs

5.1.2 Instruction Number and Derivative Instructions

As mentioned before, except for the nine instructions that can be entered using the dedicated keys on the keyboard, other
function instructions must be entered using the "instruction number”. Follow the instruction number there are postfixes D,
P, D P can be added which can derive three additional function instructions.

D: Indicates a Double Word (32-bit). The 16-bit word is the basic unit of the registers in FBs-PLC. The data length of R, T
and C (except C200~C255) registers are 16-bit. If a register with 32-bit data length is required, then it is necessary to
combine two consecutive 16-bit registers together such as R1-R0, R3-R2 etc. and those registers are represented by
prefix a D letter before register name such as DR0 represents R1-R0 and DR2 represents R3-R2. If you enter DR0 or
DWY8 in the monitor mode of FP-08, then a 32-bit long value (R1-R0 or WY24-WY8) will be displayed.

 B31 B16 B15 B0
DR0 = R1−R0 R1 R0
 ↑ ↑
 High Word register Low Word register

 B31 B16 B15 B0
DWY8 = WY24−WY8 WY24 WY8
 = Y39～Y8 ↑ ↑
 High Word register Low Word register

X0
X1
X2

5-3

Remark: In order to differentiate between 16-bit and 32-bit instructions while using the ladder diagram and
mnemonic code, we add the postfix letter D after the "Instruction number" to represent 32-bit instructions
and the size of their operand are 32-bit as shown in example 4 on P.6-6. The instruction FUN 11D has a
postfix letter D, therefore the source and destination operands need to prefix a letter D as well, such as
the augend Sa : R0 is actually Sa=DR0=R1-R0 and Sb=DR2=R3-R2. Please also pay special attention to
the length of the other operands except source and destination are only one word whether 16-bit or 32-bit
instructions are used.

P: indicates the pulse mode instruction. The instruction will be executed when the status of input control changes from 0
to1 (rising edge). As shown in example 1, if a postfix letter P is added to the instruction (FUN 15P), the instruction FUN
15P will only be executed when the status of input control signal changes from 0 to 1. The execution of the instruction
is in level mode if it does not have a P postfix, this means the instruction will be executed for every scan until the status
of input control changes from 1 to 0. In this operation manual, an example of the operation statement of a function
instruction is shown below.

● When the operation control〝EN〞=1 or（P instruction）from 0→1, ………

The first one indicates the execution requirement for non-P instruction (level mode) and the second one indicates the
execution requirement for P instruction (pulse mode). The following waveform shows the result (R0) of FUN15 and
FUN15P under the same input condition.

t is the scan time

Input control

Executes the FUN15P

(R0 initial is 0)

Executes the FUN15

(R0 initial is 0)

1

2

3

0001H

0001H 0002H 0003H 0004H

0002H

0005H 0006H

t t t t t t t t t t

D P: Indicates the instruction is a 32-bit instruction operating with pulse mode.

Remark: P instruction is much more time saving than level instruction in program scanning, So user should use P
instruction as much as possible.

5.1.3 Operand

The operand is used for data reference and storage. The data of source (S) operand are only for reference and will not be
changed with the execution of the instruction. The destination (D) operand is used to store the result of operation and its
data may be changed after the execution of the instruction. The following table illustrates the names and functions of
FATEK PLC function instruction's operands and types of contacts, coils, or registers that can be used as an operand.

5-4

 The names and functions of the major operands:

Abbreviation Name Descriptions

S Source
The data of source (S) operand are only for reading and reference and will not be
changed with the execution of the instruction. If there are more than one source
operands, each operand will be identified by the footnote such as Sa and Sb.

D Destination
The destination (D) operand is used to store the result of operation. The original data
will be changed after operation. Only the coils and registers which are not write
prohibited can be the destination operand.

L Length Indicates the data size or the length of the table, usually are constants.

N Number
A constant most often used as numbers and times. If there are more than one
constant, each constant will be identified by the footnotes such as Na, Nb, Ns, Nd,
etc..

Pr Pointer
Used to point to a specific a block of data or a specific data or register in a table.
Generally the Pr value can be varied, therefore cannot be constant or input register.

CV Current value Used in T and C instruction to store the current value of T or C

PV Set value Used in T and C instructions for reference and comparison

T Table
A combination of a set of consecutive registers forms a table. The basic operation
units are word and double word. If there is more than one table, each table will be
identified by footnotes such as Ta, Tb, Ts and Td etc..

M Matrix
A combination of a set of consecutive registers forms a matrix. The basic operation
unit is bit. If there is more than one matrix, each matrix will be identified by footnotes
such as Ma, Mb, Ms and Md etc..

Besides the major operands mentioned above, there are other operands which are used for certain special purposes such
as the operand Fr for frequency, ST for stack, QU for Queue etc.. Please refer to the instruction descriptions for more
details.

 The types of the operand and their range: The types of operand for the function instructions are discrete, register
and constant.

a) Discrete operand :

There are total five function instructions that reference the discrete operand, namely SET, RST, DIFU, DIFD
and TOGG. Those five instructions can only be used for operations of Y△△△(external output), M△△△△

(internal and special) and S△△△(step) relays. The table shown below indicates the operands and ranges of
the five function instructions.

Range

Ope-
rand

Y M SM S Symbol "O" indicates the D (Destination operand) can use this type of
coils as operands. The "*" sign above the "O" shown in SM column
indicates that should exclude the write prohibited relays as operands.
Please refer to page 2-3 for introduction of the special relays.

Y0
∣

Y255

M0
∣

M1911

M1912
∣

M2001

S0
∣

S999

D ○ ○ ○* ○

b) Register operand :

The major operand for function instructions is register operand. There are two types of register operands: the
native registers which already is of Words or Double Words data such as R, T, C. The other is derivative
registers (WX, WY, WM, WS) which are formed by discrete bits. The types of registers that can be used as

5-5

instruction operands and their ranges are all listed in the following table:
Range

Ope-
rand

WX WY WM WS TMR CTR HR IR OR SR ROR DR K XR
WX0

∣
WX240

WY0
∣

WY240

WM0
∣

WM1896

WS0
∣

WS984

T0
∣

T255

C0
∣

C255

R0
∣

R3839

R3840
∣

R3903

R3904
∣

R3967

R3968
∣

R4167

R5000
∣

R8071

D0
∣

D4095

16/32-bit

+/- number

V、Z
P0~P9

S ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○* ○ ○ ○
D ○ ○ ○ ○ ○ ○ ○ ○* ○* ○ ○
‧ ‧
‧

The "○" symbol in the table indicates can apply this kind of data as operand. The "○*" symbol indicates can apply this
kind of data except the write prohibited registers as operand. To learn more about write prohibited registers please refer
to page 2-8 for introduction of the special register.

When R5000～R8071 are not set to be read only registers, can used as normal registers (read, and write)

Remark 1: The registers with a prefix W, such as WX, WY, WM and WS are formed by 16 bits. For example, WX0
means the register is formed by X0(bit 0)~X15(bit 15). WY144 means the register is formed by Y144(bit
0)~Y159(bit 15). Please note that the discrete number must be the multiple of 8 such as 0, 8, 16, 24....

Remark 2: The last register (Word) in a table can not be represented as a 32-bit operand in the function because 2
Words are required for a 32-bit operand.

Remark 3: TMR（T0～T255）and CTR（C0～C255）are the registers of timers and counters respectively. Although
they can be used as general registers, they also complicate the systems and make debugging more
difficult. Therefore you should avoid writing anything into the TMR or CTR registers.

Remark 4: T0～T255 and C0～C199 are 16-bit register. But C200~C255 are 32-bit register, therefore can’t be
used as 16-bit operands.

Remark 5: Apart from being directly appointed by register’s number (address) as the foregoing discussions, the
register’s operand in the range of R0～R8071 can be combined with pointer register V、Z or P0~P9 to
make indirect addressing. Please refer to the example in the next section (Section 5.2) for the
description of using pointer register (XR) to make indirect addressing.

c) Constant operands :

The range of 16-bit constant is between -32768~32767. The range of 32-bit constant is between
-2147483648~2147483647. The constant for several function instructions can only be a positive constant. The
range of 16-bit and 32-bit constants are listed in the table shown below.

Classification Range

16-bit signed number -32768～32767

16-bit un-signed number 0～32767

32-bit signed number -2147483648～2147483647

32-bit un-signed number 0～2147483647

16/32-bit signed number
-32768～32767 or

-2147483648～2147483647

16/32-bit un-signed number
0～32767 or
0～2147483647

It is possible that the length and size of a specific operand, such as L, bit size, N etc.., are different, and the
differences are all directly marked at the operand column. Please refer to the explanations of function
instructions.

5-6

5.1.4 Functions Output (FO)

The “Function Output” (FO) is used to indicate the operation result of the function instruction. Like control input, each
function outputs shown in the screen of programming software are all attached with a word which comes from the
abbreviation of the output functionality. Such as CY derived from CarrY. The maximum number of function outputs is 4
and those are denoted as FO0, FO1, FO2, FO3 respectively. The FO status must be taken out by FO instruction (there is
a FO special key on FP-08 program writing device). The unused FO may be left without connecting to any elements, such
as FO1 (CY) shown in Example 4 below.

Example 4 :

Ladder Diagram Mnemonic Codes

X0
EN D=0

CY

BR

11D.(+) Y0

Y1

Sa :
Sb :
D :

R

R
R

0
2
4U/S

ORG X 0
FUN 11D
 Sa: R 0
 Sb: R 2
 D : R 4
FO 0
OUT Y 0
FO 2
OUT Y 1

When M1919=0, the FO status will only be updated if the instruction is executed. It will keep the same status until
a new FO status is generated after the instruction is executed again (memory keeping).

When M1919=1, the FO status will be reset to 0 (no memory keeping) if the instruction is not executed.

5.2 Use Index Register(XR) for Indirect Addressing

In the FBs-PLC function instructions, there are some operands that can be combined with pointer register (V、Z、P0~P9)
to make indirect addressing (will be shown in the operand table if it applicable). However, only the registers in the range
R0～R8071 can be combined with an pointer register to perform indirect addressing (other operands such as discrete,
constant and D0～D3071 cannot be used for indirect addressing).

There are twelve pointer registers XR (V、Z、P0~P9). The V register in fact is the R4164 of special registers (R3840～

R4167) , the Z register is the R4165 and the P0~P9 register is the (D4080~D4089). The actual addressed register by
index addressing is just offset the original operand with the content of the index register.

Original
Operand

↓

Pointer
Register
↓

Actual
Operand

↓
R100 V (If V=50) = R150

100 + 50
 (If V=100) = R200

 ‧
‧
‧
‧

‧
‧
‧
‧

5-7

As shown in the above diagram, you only need to change the V value to change the operand address. After combining
the index addressing with the FBs-PLC function instructions, a powerful and highly efficient control application can be
achieved by using very simple instructions. Using the program shown in the diagram below as an example, you only need
to use a block move instruction (BT_M) to achieve a dynamic block data display, such as a parking management system.

Index Register(P0~P9) Introduction

In indirect addressing application, Rxxxx register can combine V、Z & P0～P9 for index addressing; Dxxxx register can't
combine V、Z for index addressing, but P0～P9 are allowed.

When V、Z index register being combined with the Rxxxx register,
for example, R0 with V、Z, the instruction format is R0V(where V=100, it means R100) or R0Z(where Z=500, it means
R500); when P0～P9 index register being combined with the Rxxxx register, the instruction format is RPn (n=0～9) or
RPmPn (m,n=0～9), for example RP5 (where P5=100, it means R100) or RP0P1(where P0= 100, P1=50, it means150).

When P0～P9 index register being combined with the Dxxxx register, the instruction format is DPn (n=0～9) or DPmPn
(m,n=0～9), for example DP3 (where P3=10, it means D10) or DP4P5 (where P4=100, P5=1, it means D101).

It can combine both P0～P9 index register, for example P2=20, P3=30, when Rxxxx or Dxxxx register combines both
index register, RP2P3 will point to R50, DP2P3 will point to D50, it means the summation of both index register for indirect
addressing.

EN

U/S

X23

X23

M1924

BR

L : 4

11P.(+)

P2

4

P2

Sa :

D :

Sb :

D=0

CY

RP2

R2000

Ts :

Td :

08.MOV

100

P2D :

S :

EN

EN

103P.BT_M

1. Index register P2=100 while power up or first run.

2. When X23 changes from 0 1, FUN103 will perform the

table movement, the source starts from R100 (P2=100),
the destination starts from R2000, the amount is 4.
Coping the content of R100~R103 for R2000~R2003 at
first execution, coping the content of R104~R107 for
R2000~R2003 at second execution…

3. Increasing the P2 index register by 4 to point to next 4

5-8

 Indirect addressing program example

Ladder Diagram Mnemonic Codes

103.BT_M
Ts :
Td :

EN R100 V
R2000
4L :

ORG SHORT
FUN 103

 Ts： R100V
 Td： R2000
 L： 4

 resident

data base in PLC

 Pointer Register

V

Resident 2

 R100 Name 4 Sensor
Station

(V=0) Resident 1
R101 Tel. No.
R102 Car plate No.

․
․
․

 R103 Parking No.

 R104 Name

(V=4) Resident 2
R105 Tel. No.
R106 Car plate No.

․
․
․
․
․
․
․
․
․

 R107 Parking No. Temporary
Display

Storage Area

 ․
․
․
․
․
․

 Monitor
 ××Community Resident

Parking System R2000 Name
 R2001 Tel. No. Name: (R2000)

 Name R2002 Car plate No. Tel. No. (R2001)

(V=396) Resident 100
 Tel. No. R2003 Parking No. Car plate No. (R2002)

 Car plate No. Parking No. (R2003)

 Rnnn Parking No.

 Description Suppose that there are 100 resident parking spaces available in a parking management system for
community residents. Each resident has a set of basic information including name, telephone number,
number plate and parking number, that occupy four consecutive PLC registers as shown in the above
diagram. A total of 400 registers (R100～R499) are occupied. Each resident is given a card with a unique
card number (the number is 0 for resident 1, 4 for resident 2 etc..) for the sensing pass of the main
entrance and parking lot. The card number will be sensed by the PLC and stored into the pointer register
“V”. The attendant’s monitor (LCD or CRT) will only display the data grasped by R2001～R2003 in the
PLC. For example, the card of residence 2 with the card number 4 is sensed, then the register V=4 and
the PLC will immediately move the data in R104～R107 to the temporary display storage area (R2000～

R2003). Hence, the attendant’s monitor can display the data of residence 2 as soon as its card is sensed.

5-9

 Warning

1. Although using pointer register for indirect addressing application is powerful and flexible, but
changing the V and Z values freely and carelessly may cause great damages with erroneous
writing to the normal data areas. The user should take special caution during operation.

2. In the data register range that can be used for indirect addressing application (R0～R8071), the
328 registers R3840～R4167 (i.e. IR, OR and SR) are important registers reserved for system or
I/O usage. Writing at-will to these registers may cause system or I/O errors and may result in a
major disaster. Due to the fact that users may not easily detect or control the flexible register
address changes made by the V and Z values, FBs-PLC will automatically check if the
destination address is in the R3840～R4067 range. If it is, the write operation will not be executed
and the M1969 flag “Illegal write of Indirect addressing” will be set as 1. In case it is necessary to
write to the registers R3840～R4067, please use the direct addressing.

5.3 Numbering System

5.3.1 Binary Code and Related Terminologies

Binary is the basic numbering system of digital computer. Since the PLC operates with discrete ON/OFF values, it is
natural to use binary codes. The following terminologies should be fully understood before go to further topic of
numbering system.

● Bit: (Abbreviated as B, such as B0, B1, and so on) It is the most basic unit of binary value. The status of bit is either
“1” or “0”.

● Nibble: (Abbreviated as NB, such as NB0, NB1, and so on）It is formed by four consecutive bits (e.g. B3～B0) and
can be used to represent a decimal number 0～9 or a hexadecimal number 0～F.

● Byte: (Abbreviated as BY, such as BY0, BY1, and so on) It is formed by two consecutive nibbles (or 8 bits, such as
B7～B0) and can be used to represent a 2-digit hexadecimal number 00～FF.

● Word: (Abbreviated as W, such as W0, W1, and so on) It is formed by two consecutive bytes (or 16 bits, such as B15
～B0) and can be used to represent a 4-digit hexadecimal number 0000～FFFF.

● Double Word: (Abbreviated as DW, such as DW0, DW1, and so on) It is formed by two consecutive words (or 32 bits,
such as B31～B0) and can be used to represent an 8-digit hexadecimal number 00000000～FFFFFFFF.

DW ← Double Word

W1 W0 ← Word

BY3 BY2 BY1 BY0 ← Byte

NB7 NB6 NB5 NB4 NB3 NB2 NB1 NB0 ← Nibble

B31 B30 B29 B28 B27 B26 B25 B24 B23 B22 B21 B20 B19 B18 B17 B16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 ← Bit

● Floating Point Number: It is also formed by two consecutive words. The Floating Point Number can expressed the
maximum range is ±(1.8*10-38

～3.4*1038). For the details, Please refer to section 5.3.6 for explanation.

5-10

5.3.2 The Coding of Numeric Numbers for FBs-PLC

FBs-PLC use the binary numbering system for its internal operations that is the data of external BCD inputs must be
converted to binary number before the PLC can process. As we know the binary code is very difficult to read and input to
the PLC for human, therefore FP-08 and WinProladder use the decimal unit or hexadecimal unit to input or to display the
data. But in reality, all the operations taking place in the PLC are performed with binary code.

Remark: If you input or display the data without going through the FP-08 or WinProladder (For instance, input data
into or take out data from PLC through the I/O terminals using thumb wheel switch or seven segment
display), then you have to use the Ladder program to perform the Decimal to Binary conversion. This
enables you to input and display data without using the FP-08 and WinProladder. Please refer to
FUN20(BIN→BCD) and FUN21(BCD→BIN).

5.3.3 Range of Numeric Value

As we have mentioned before that FBs-PLC uses binary numbers for its internal operations. 16-bit,32-bit and
Floating Point Number are three different numeric data of FBs-PLC. The ranges of the three numeric values are shown
below.

16-bit −32768～32767

32-bit −2147483648～2147483647

Floating point number ±(1.8*10-38
～3.4*1038)

5.3.4 Representation of Numeric Value (Beginners can skip this section)

The representation and specification of 16-bit and 32-bit numeric values are provided below to enable the user to further
understand the numeric value operation for more complicated applications.

The most significant bits MSB of 16-bits and 32-bits (B15 for 16-bit and B31 for 32-bit) are used to identify positive and
negative numbers (0: positive and 1: negative). The remaining bits (B14~B0 or B30~B0) represent the magnitude of the
number. The following example uses 16-bit for further explanations. Please note that everything also applies to 32-bit
numbers and the only difference is the length.

0: Positive Number

 16
38

4
81

92

40
96

20

48

10
24

51

2
25

6
12

8
64

32

16

8 4 2 1

12345 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1 3039H
(Decimal) B15 B0 (Hexadecimal)

8192+4096+32+16+8+1=12345

In the above example, regardless of its size (16-bit or 32-bit), and starting with the least significant bit LSB (B0). B0 is 1,
B1 is 2, B2 is 4, B3 is 8, and so on. The number represented by the neighboring left bit will double its value (1, 2, 4, 8, 16,
and so on) and the value is the sum of the numbers represented by the bits that are equal to 1.

5-11

5.3.5 Representation of Negative Number (Beginners should skip this section)

As prior discussion, when the MSB is 1, the number will be a negative number. The FBs-PLC negative numbers are
represented by 2’S Complement, i.e. to invert all the bits (B15～B0 or B31～B0) of its equivalent positive number (The
so-called 1’S Complement is to change the bits equal 1 to 0 and the bits equal 0 to 1) then add 1. In the above example,
the positive number is 12345. The calculation of its 2’S Complement (i.e. –12345) is described below:

12345 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1 3039H

1'S
Complement

 1 1 0 0 1 1 1 1 1 1 0 0 0 1 1 0 CFC6H

of 12345

 + 1

2'S Complement 1 1 0 0 1 1 1 1 1 1 0 0 0 1 1 1 CFC7H
of 12345

(−12345)

5.3.6 Representation of Floating Point Number (Beginners should skip this section)

The format of floating point number of FATEK-PLC follows the IEEE-754 standard, which use a double word for storage
and can be expressed as follow:

floating point number = sign + Exponent + Mantissa

Sign Exponent Mantissa

1 bit 23 bits8 bits

32 bits

b ～ b30 23 b ～ b22 031b

▲ If the sign bit is 0 the number is positive, if the sign bit is 1 the number is negative.

▲ The exponent is denoted as 8-bit excess 127.
▲ The mantissa is 23-bit with radix 2. A normalized mantissa always starts with a bit 1, followed by

the radix point, followed by the rest of the mantissa. The leading bit 1, which is always present in a
normalized mantissa, is implicit and is not represented.

● The Conversion rule of Integer to floating is :

N = (-1) S * 2 (E -127) * (1.M) 0 < E < 255
For example :
 (1). 1 = (-1) 0 * 2 (01111111) * (1.000………0)

The sign is represented by 0, the exponent's code in excess 127 is 127 = 01111111, and the significant
bit is 1, resulting in the mantissa being all O's. The simple precision IEEE 754 representation of 1, is
thus :

 = 3F800000H
 (2). 0.5 = (-1) 0 * 2 (01111110) * (1.000………0)

Code(1) =

5-12

The sign is represented by 0, the exponent's code in excess 127 is 126 - 127 = 01111110, and the
significant bit is 1, resulting in the mantissa being all O's. The simple precision IEEE 754 representation
of 0.5, is thus :

 = 3F000000H
 (3). -500.125 = (-1) 1 * 2 (10000111) * (1. 11110100001000000000000)

The sign is represented by 1, the exponent's code in excess 127 is 135 - 127 = 10000111, and the
significant bit is 1, resulting in the mantissa is 11110100001000000000000. The simple precision IEEE
754 representation of -500.125, is thus :

 = C3FA1000H

5.4 Overflow and Underflow of Increment (+1) or Decrement (-1) (Beginners should skip this section)

The maximum positive value that can be represented by 16-bit and 32-bit operands are 32767 and 2147483647,
respectively. While the minimum negative values that can be represented by 16-bit and 32-bit operands are –32768
and –2147483648, respectively. When increase or decrease an operand (e.g. when Up/Down Count of a counter or the
register value is +1 or −1), and the result exceeds the value of the positive limit of the operand, then “Overflow” (OVF)
occurs. This will cause the value to cycle to its negative limit (e.g. add 1 to the 16-bit positive limit 32767 will change it
to –32768). If the result is smaller than the negative limit of the operand, then “Underflow” (UDF) occurs. This will cause
the value to cycle to its positive limit (e.g. deducting 1 from the negative limit –32768 will change it to 32767) as shown in
the table below. The flag output of overflow or underflow exists in the FO of FBs-PLC and can be used in cascaded
instructions to obtain over 16-bit or 32-bit operation results.

Code(0.5) =

Code(-500.125) =

5-13

 Increase

 (Decrease)
 Result

Overflow/
Underflow

16-bit Operand 32-bit Operand

Increase OVF=1

−32767
−32768
 32767
 32766
 32765

OVF=1

−2147483646
−2147483647
−2147483648
 2147483647
 2147483646

Decrease UDF=1

−32767
−32768
 32767
 32766
 32765

UDF=1

−2147483647
−2147483648
 2147483647
 2147483646
 2147483645

5.5 Carry and Borrow in Addition/Subtraction

Overflow/Underflow takes place when the operation of increment/decrement causes the value of the operand to exceed
the positive/negative limit that can be represented in the PLC, consequently a flag of overflow/underflow is introduced.
Carry/Borrow flag is different from overflow/underflow. At first, there must be two operands making addition (subtraction)
where a sum (difference) and a flag of carry/borrow will be obtained. Since the number of bits of the numbers to be added
(subtracted), to add (subtract) and of sum (difference) are the same (either 16-bit or 32-bit), the result of addition
(subtraction) may cause the value of sum (difference) to exceed 16-bit or 32-bit. Therefore, it is necessary to use
carry/borrow flag to be in coordination with the sum (difference) operand to represent the actual value. The carry flag is
set when the addition (subtraction) result exceeds the positive limit (32767 or 2147483647) of the sum (difference)
operand. The borrow flag is set when addition (subtraction) result exceeds the negative limit (−32768 or −2147483648)
of the sum (difference) operand. Hence, the actual result after addition (subtraction) is equal to the carry/borrow plus the
value of the sum (difference) operand. The FO of FBs-PLC addition/subtraction instruction has both carry and borrow flag
outputs for obtaining the actual result.

MSB
 ↓

LSB
↓

 16-bit／32-bit To Be Added (Subtracted) Operand

+(−) 16-bit／32-bit Addition (Subtraction) Operand

 1-bit Carry/Borrow 16-bit or 32-bit Sum (Difference) Operand

5-14

While all FBs-PLC numerical operations use 2’S Complement, the representation of the negative value of the sum
(difference) obtained from addition (subtraction) is different from the usual negative number representation. When the
operation result is a negative value, 0 can never appear in the MSB of the sum (difference) operand. The carry flag
represents the positive value 32768 (2147483648) and the borrow flag represents the negative value −32768
(−2147483648).

Negative Value
(MSB=1)

Positive Value
(MSB=0)

0 Flag

=1

，−2，−1，−32768，
 (−2147483648)

，−2，−1，0，1，2，

，32767，0，1，

 (2147483647)

Borrow Flag=1 Carry Flag=1

MSB

↓

LSB

↓

P
ositive V

alue

C=1 B=0 Z=0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 32769
C=1 B=0 Z=0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32768
C=0 B=0 Z=0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 32767
C=0 B=0 Z=0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 32766
C=0 B=0 Z=0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 32765

C=0 B=0 Z=0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2
C=0 B=0 Z=0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
C=0 B=0 Z=1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C=0 B=0 Z=0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 −1

 N
egative V

alue

C=0 B=0 Z=0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 −2

C=0 B=0 Z=0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −32766
C=0 B=0 Z=0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −32767
C=0 B=0 Z=0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −32768
C=0 B=1 Z=0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 −32769
C=0 B=1 Z=0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 −32770

C = Carry B = Borrow Z = Zero

